header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ROBOTIC ASSISTED TOTAL KNEE REPLACEMENT: A SURGICAL TECHNIQUE VIDEO

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Insall, Laskin and others have taught us that the goal of successful total knee replacement (TKR) is to have well fixed and fitted components in a neutral mechanical axis (MA) with balanced soft tissues. Computer and robotic assisted (C-RAS) TKR with real time validation is an excellent tool to help you to attain these goals. Ritter and others have shown higher early failure rates with TKR's where the final alignment is outside a 3-degree window of the neutral MA. Dalury and Schroer have each shown higher early failure rates in TKR's with postoperative instability and or malalignment. C-RAS TKR helps prevent and significantly lowers the number of TKR outliers that may go on to early aseptic loosening and failure as compared with traditional methods.

This featured video was created to show how surgeons can benefit from real-time validation and the kinematic data provided during C-RAS. The system helps in their intraoperative decision-making process and then guides them to make precise bone cuts and balance the soft tissue envelope in a very time efficient and highly repeatable fashion. Additionally, imageless C-RAS breaks away from the paradigm of pre-operative MRI or CT scan imaging studies by no longer requiring such costly procedures. This relatively easy, simple to learn, and cost-efficient procedure is a valuable asset in the operating room, for both the surgeon and patient. Furthermore, it is highly customizable and easily integrated into any surgeon's workflow, technique, and exposure. The viewer will learn the C-RAS TKR simple workflow of Tracking, Registration, Navigation, and Validation.

The results of the previously published abstract “Influence of Pre-Operative Deformity on Surgical Accuracy and Time in Robotic-Assisted TKA” JA Koenig; C Plaskos; BJJprocs.boneandjoint.org.uk 95-B/SUPP28/62 2013, will also be presented at the end of the video. Finally many have argued that C-RAS TKR is an excellent method to teach the “ART of TKR” to young surgeons, residents and students as they can see with real time validation and data the immediate consequences and effects of their intra-operative actions and maneuvers.


*Email: