header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

EXCESSIVE BONE RESECTION ANGLE OUTLIERS WITH CONVENTIONAL TOTAL KNEE ARTHROPLASTY TECHNIQUES CAN BE REDUCED WITH INTRA-OPERATIVE X-RAYS

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Introduction

The conventional bone resection technique in TKA is recognized as less accurate than computer-assisted surgery (CAS) and patient-matched instrumentation (PMI). However, these systems are not available to all surgeons performing TKAs. Furthermore, it was recently reported that PMI accuracy is not always better than that of the conventional bone resection technique. As such, most surgeons use the conventional technique for distal femur and proximal tibia resection, and efforts to improve bone resection accuracy with conventional technique are necessary. Here, we examined intraoperative X-rays after bone resection of the distal femur and proximal tibia with conventional bone resection technique. If the cutting angle was not good and the difference from preoperative planning was over 3º, we considered re-cutting the bone to correct the angle.

Methods

We investigated 117 knees in this study. The cutting angle of the distal femur was preoperatively determined by whole-length femoral X-ray. The conventional technique with an intramedullary guide system was used for distal femoral perpendicular resection to the mechanical axis. Proximal tibial cutting was performed perpendicular to the tibial shaft with an extramedullary guide system. The cutting angles of the distal femur and proximal tibia were estimated by intraoperative X-ray with the lower limb in extension position. When the cutting angle was over 3º different from the preoperatively planned angle, re-cutting of distal femur or proximal tibia was considered.

Results

On the intraoperative X-ray, the average femoral cutting angle difference from preoperative planning was 0.1º (SD: 2.6º) and the average tibial cutting angle was 1.1º varus (SD: 1.8º). Over 3º and 5º outlier cases were observed in 15 knees and 5 knees on the femoral side and in 15 knees and 3 knees on the tibial side respectively. Cutting angle correction was performed in 18 knees on the distal femur and 17 knees on the proximal tibia. On the postoperative X-ray, over 3º and 5º outliers were observed in 16 knees and only 1 knee on the femoral side and in 11 knees and no cases on the tibial side respectively. Cases with outliers over 3º were not different between intra- and postoperative estimation; however, the number of over 5º outliers was decreased from 8 knees (6.8%) to 1 knee (0.9%) including both the femoral and tibial sides (p < 0.05, Chi-square test).

Discussion

Precise bone cutting technique is important for TKA; however, the bone resection accuracy of the conventional technique is far from satisfactory. CAS, PMI, and portable navigation have been developed for precise bone resection in TKA. However, these new technologies involve additional cost and have not been clearly shown to improve accuracy. Most surgeons currently use the conventional technique, and we think it is possible to improve bone resection accuracy with the conventional technique in TKA. Our method is simple and requires just one intraoperative X-ray. This is cost-effective and can be performed by most surgeons. Our results indicate that a single intraoperative X-ray can reduce the number of excessive bone resection angle outliers in TKA.


*Email: