header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

TIBIOFEMORAL ROTATIONAL ALIGNMENT IS CHANGED AND AFFECTS FLEXION ANGLES IN NAVIGATED POSTERIOR-STABILIZED TOTAL KNEE ARTHROPLASTY

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 2.



Abstract

Purpose

To investigate the tibiofemoral rotational profiles during surgery in navigated posterior-stabilized (PS) total knee arthroplasty (TKA) and investigated the effect on postoperative maximum flexion angles.

Materials and Methods

At first, twenty-five consecutive subjects (24 women and 1 man; age: mean, 77 years; range, 58–85 years) with varus osteoarthritis treated with navigated PS TKA (Triathlon, Stryker, Mahwah, NJ) were enrolled in this study. Kinematic parameters, including the tibiofemoral rotational angles from maximum extension to maximum flexion, were recorded thrice before and after PCL resections, and after implantation. The effect of PCL resection and component implantation on tibiofemoral rotational kinematics was statistically evaluated. Then, the effect of tibiofemoral rotational alignment changes on the postoperative maximum angles were retrospectively examined with 96 subjects (84 women, 12 men; average age, 76 years; age range, 56–88 years) who underwent primary TKA.

Results

The tibiofemoral kinematics revealed a significant tibial internal rotation after PCL resection, which further increased after implantation compared with that before PCL resection (p < 0.01 and p < 0.001, respectively). Furthermore, the tibial internal rotations at 60° and 90° flexion after PCL resection and implantation were significantly increased compared with those before PCL resection (p < 0.05). The amount of tibial internal rotation from 90° flexion to maximum flexion was significantly decreased after PCL resection and implantation compared with that before PCL resection (p < 0.05). Furthermore, multi-linear regression analysis found that the internal changes of the rotational alignment was independent factor for the worse improvement of the postoperative maximum flexion angles (R2=0.078, p=0.0067). There was a positive correlation between preoperative tibial external rotational alignment and the internal changes of the postoperative rotational alignment (R2=0.172, p<0.0001), however, no correlation was found between the preoperative rotational alignment and the improvement of the maximum flexion angles.

Discussion and Conclusion

The study revealed that PCL resection changed the tibial rotational alignment and decreased the amount of tibial internal rotation. The implantation of PS components further increased the internal rotational alignment and could not compensate for the tibiofemoral rotation. Finally, the internal changes of rotational alignment affected the improvement of the maximum flexion angles, suggesting that rotational alignment is one of important factors to achieve better postoperative maximum flexion angles. Although the factors which affect the rotational alignment remains unknown in this study, these results suggest that further development of PS TKA, including the surgical technique and implant design, are needed to achieve better knee kinematics, following better clinical outcomes.


*Email: