header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

ACCURACY COMPARISON BETWEEN TWO CONTEMPORARY CAOS SYSTEMS

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 1.



Abstract

Introduction

Evaluations of Computer-assisted orthopaedic surgery (CAOS) systems generally overlooked the intrinsic accuracy of the systems themselves, and have been largely focused on the final implant position and alignment in the reconstructed knee [1]. Although accuracy at the system-level has been assessed [2], the study method was system-specific, required a custom test bench, and the results were clinically irrelevant. As such, clinical interpolation/comparison of the results across CAOS systems or multiple studies is challenging. This study quantified and compared the system-level accuracy in the intraoperative measurements of resection alignment between two CAOS systems.

Materials and Methods

Computer-assisted TKAs were performed on 10 neutral leg assemblies (MITA knee insert and trainer leg, Medial Models, Bristol, UK) using System I (5 legs, ExactechGPS®, Blue-Ortho, Grenoble, FR) and System II (5 legs, globally established manufacturer). The surgeries referenced a set of pre-defined anatomical landmarks on the inserts (small dimples). Post bone cut, the alignment parameters were collected by the CAOS systems (CAOS measured alignment). The pre- and post- operative leg surfaces were scanned, digitized, and registered (Comet L3D, Steinbichler, Plymouth, MI, USA; Geomagic, Lakewood, CO, USA; and Unigraphics NX version 7.5, Siemens PLM Software, Plano, TX, USA). The alignment parameters were measured virtually, referencing the same pre-defined anatomical landmarks (baseline). The signed and unsigned measurement errors between the baseline and CAOS measured alignment were compared between the two CAOS systems (significance defined as p<0.05), representing the magnitude of measurement errors and bias of the measurement error generated by the CAOS systems, respectively.

Results

The measurement errors are presented [Table 1]. For unsigned measurement error, System II was higher in the tibial varus/valgus alignment and posterior slope (p≤0.01), and lower in the femoral varus/valgus alignment (p=0.03), compared to System I [Fig. 1]. System II exhibited higher error bias towards tibial varus alignment (up to 2.59°), more posterior slope (up to 1.41°), and more femoral hyper extension (up to 1.6°) than System I (p<0.01) [Fig. 1]. The mean signed and unsigned errors were generally less than 1°, except for System II in the measurement of tibial varus/valgus alignment (signed and unsigned mean errors=1.93°).

Discussion

This study reported system-dependent bias and variability associated with intraoperative measurements of alignment parameters during TKA. The results showed that System I generally had lower variability and less bias than System II. Although the majority of the significant differences found were clinically irrelevant (<1° in means), System II was notably shown to produce on average ∼2° measurement errors in tibial varus/valgus alignment biased towards varus.

Intra-operative measurement of surgical resection parameters during imageless computer-assisted TKA surgery is a critical step, in which a surgeon directly relies on the real-time data to prepare the bony resections and check the final realized cuts. Clinical-level accuracy in alignment outcomes has been shown to be system-dependent [2], this study further suggested there are differences in system-level accuracy between CAOS systems.


*Email: