header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

BEARING SURFACE ABRASIVE WEAR AND CORROSION DAMAGE MECHANISMS IN RETRIEVED COCR ALLOY FEMORAL COMPONENTS FOR CONTEMPORARY TKA

The International Society for Technology in Arthroplasty (ISTA), 28th Annual Congress. PART 1.



Abstract

Introduction

Previous studies of long-term CoCr alloy femoral components for TKA have identified 3rd body abrasive wear and inflammatory cell induced corrosion (ICIC). The extent of femoral condyle surface damage in contemporary CoCr femoral components is currently unclear. The purpose of this study was to investigate the prevalence and morphology of damage (3rd body scratches and ICIC) at the bearing surface in retrieved TKA femoral components from contemporary designs.

Methods

308 CoCr femoral TKA components were collected as part of an ongoing, multi-institutional orthopedic implant retrieval program. The collection included contemporary designs from Stryker (Triathlon n=48, NRG n=10, Scorpio n=31), Depuy Synthes (PFC n=27) and Zimmer (NexGen n=140, Persona n=1) and Biomet (Vanguard n=51). Hinged knee designs and unicondylar knee designs were excluded. Components were split into groups based on implantation time: short-term (1–3y, n=134), intermediate-term (3–5y, n=73) and long-term (6–15y, n=101). Each grouping was mainly revised for instability, infection and loosening.

Third-body abrasive wear of CoCr was evaluated using a semi-quantitative scoring method similar to the Hood method (Figure 1). A score of 1 had minimal damage and a score of 4 corresponded to damage covering more than 50% of the evaluated area. ICIC damage was reported as location of affected area. A white light interferometer (Zygo New View 5000) was also used to analyze the topography of severe damage of the bearing surface. For this analysis, three representative components from each cohort were selected and analyzed in three locations on the apex of the bearing surface. We analyzed the following roughness parameters: Ra, Rsk, and Rku.

Results

On the CoCr bearing surface, the primary damage mechanisms were large scratches, small random scratches, and ICIC damage (Figure 2). Mild to severe damage (Damage Score ≥ 2) was observed in 96% of the short-term, 98% intermediate-term and 94% of long-term components. Severe damage (Damage Score = 4) was observed in 43% of the short-term, 50% intermediate-term and 56% of long-term components. ICIC damage observed on a portion of the bearing surface was detected in 43% of the short-term components, 30% of the intermediate-term components and 26% of the long term components. Apparent ICIC damage on the bearing and/or a non-bearing region of the component was observed in 85% of the short-term components, 75% of the intermediate-term components and 80of long-term TKA components. The Ra, Rsk, and Rku were similar between cohorts (Table 1).

Discussion

Abrasive wear of the femoral components was frequently observed in retrieved contemporary femoral components for TKA, regardless of their implantation time, and can most likely be attributed to third body damage caused by bone or bone cement debris. The prevalence of severe CoCr damage scores was highest in the long-term cohort, while the appearance of ICIC damage was lowest in the long-term cohort. Surface roughness parameters were similar in all three cohorts suggesting that the mechanism for this damage is comparable throughout the first 15 years of service. Future work is necessary to quantify the in vivo release of CoCr from abrasive wear and corrosion mechanisms, and the effects of increased surface roughness on wear of the polyethylene counter face.


*Email: