header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE SAFE ZONE FOR ACETABULAR COMPONENT ORIENTATION

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

INTRODUCTION

Cup malpositioning remains a common cause of dislocation, wear, osteolysis, and revision. The concept of a “Safe Zone” for acetabular component orientation was introduced more than 35 years ago1. The current study assesses CT studies of replaced hips to assess the concept of a safe zone for acetabular orientation by comparing the orientation of acetabular components revised due to recurrent instability and to a series of stable hip replacements.

METHODS

Cup orientation in 30 hips revisedin 27patients for recurrent instability was measured using CT. These hips were compared to a group of 115 stable hips measured using the same methods. Femoral anteversion in the stable hips was also measured. Images to assess femoral anteversion in the unstable group were not available. An application specific software modules was developed to measure cup orientation using CT (HipSextant Research Application 1.0.13 Surgical Planning Associates Inc., Boston, Massachusetts). The cup orientation was determined by first identifying Anterior Pelvic Plane Coordinate system landmarks on a 3D surface model. A multiplanar reconstruction module then allowed for the creation of a plane parallel with the opening plane of the acetabulum. The orientation of the cup opening plane in the AP Plane coordinate space was calculated according to Murray's definitions of operative anteversion and operative inclination2. Both absolute cup position relative to the APP and tilt-adjusted cup position3 were calculated.

RESULTS

Operative anteversion for the anteriorly unstable hips was significantly higher than in the stable hips (p < 0.001). Operative anteversion for the posteriorly unstable hips was significantly lower than in the stable hips (p < 0.01). Adjusting for pelvic tilt in the supine position, all unstable hips had operative anteversion of less than 21.8 or more than 42.6 degrees or operative inclination of less than 30.6 or more than 55.9 degrees or both. The center of the “safe zone” is 32.2 ± 10.4 degrees of tilt-adjusted operative anteversion and 45.3 ± 8.7 degrees of operative inclination (Figure 1).

CONCLUSIONS

The current study demonstrates that most conventionally placed acetabular components are malpositioned but not all malpositioned acetabular components are associated with dislocation. Using acetabular revision for recurrent instability as the end point, a safe zone for acetabular component orientation does exist. The range is narrower for anteversion than for inclination. Improved methods of accurately placing the acetabular component placement may reduce the incidence of cup malposition and its associated complications.


Email: