header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

PARTICLES FROM VITAMIN E-DIFFUSED HXL UHMWPE INDUCE LESS OSTEOLYSIS COMPARED WITH VIRGIN HXL UHMWPE IN VIVO

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

Introduction

UHMWPE particle-induced osteolysis is one of the major causes of arthroplasty revisions. Recent in vitro findings have suggested that UHMWPE wear particles containing vitamin-E (VE) may have reduced functional biologic activity and decreased potential to cause osteolysis (Bladed C. L. et al, JBMR B 2012 and 2013). This is of significant importance since VE-stabilized cross-linked UHMWPEs were recently introduced for clinical use, and there is no in vivo data determining the effects of wear debris. In this study we hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE (VE-UHMWPE) would cause reduced levels of osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE.

Methodology

Study groups were the following: 1). Radiation cross-linked VE-UHMWPE (0.8% by weight) diffused after 100 kGy; 2). Radiation cross-linked virgin UHMWPE (virgin UHMWPE); 3). Sham controls. Particle generation and implantation: UHMWPE was sent to Bioengineering Solutions (Oak Park, IL) for particle generation. After IACUC approval, C57BL/6 mice (n=12 for each group) received equal amount of particulate debris (3mg) overlying the calvarium and were euthanized after 10 days. Micro-CT scans: High resolution micro-CT scans were performed using a set voltage of 70 kV and current of 70 µA. Topographical Grading Scale: Each calvarial bone was blindly scored using the following scale: 0=No osteolysis, defined as intact bone; 1=Minimal osteolysis, affecting 1/3 or less of the bone area; 2=Moderate osteolysis, affecting at least 2/3 of the bone area; 3=Severe osteolysis, defined as completely osteolytic bone. Histology: H&E and TRAP staining was done on tissue to confirm micro-CT findings and quantify osteoclasts. Statistical Analysis: Inter-rater analysis was done using Cohen's kappa analysis. An inter-rater coefficient >0.65 was considered as high inter-rater agreement. Comparison between groups was made using one-way ANOVA with post hoc Bonferroni correction for multiple comparisons. Correlations are reported as Spearman's rho. P-value<0.05 was considered statistically significant.

Results

More than 83% of the VE-UHMWPE and more than 85% of the virgin UHMWPE particles measured less than 1 µm in mean particle size. There was a statistically significant greater level of osteolysis visualized on the topographical grading scale in calvaria implanted with virgin UHMWPE wear particles. Micro-CT findings were confirmed histologically (Fig. 1). A greater amount of inflammatory tissue overlaying the calvaria was observed in the virgin UHMWPE group when compared to both shams and VE-UHMWPE groups. Post hoc analysis revealed significant difference between VE-UHMWPE and virgin UHMWPE for the topographical osteolysis grading score (p=0.002) but no difference in osteoclast counts (p=0.293).

Discussion and Conclusion

This is the first in vivo study reporting the effects of clinically-relevant UHMWPE particles generated from a VE-UHMWPE implant that is in current clinical use. These results suggest that VE-UHMWPE particles have reduced osteolysis potential in vivo when compared to virgin, highly cross-linked UHMWPE in a murine calvarial bone model. Arthroplasty procedures using VE-UHMWPE might be less susceptible to peri-prosthetic loosening caused by wear debris.


*Email: