header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

EFFECT OF MOBILITY OF THE SECOND INSERT-TRAY ARTICULATION ON THE STRESS STATE OF MOBILE-BEARING KNEE PROSTHESIS

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 3.



Abstract

Introduction

Mobility at insert-tray articulations in mobile bearing knee implant accommodates lower cross-shear at polyethylene (PE) insert, which in turn reduces wear and delamination as well as decreasing constraint forces at implant-bone interfaces. Though, clinical studies disclosed damage due to wear has occurred at these mobile bearing articulations. The primary goal of this study is to investigate the effect of second articulations bearing mobility and surface friction at insert-tray interfaces to stress states at tibial post during deep flexion motion.

Method & Analysis

Figure 1 shows the 3-D computational aided drawing model and finite element model of implant used in this study. LS-DYNA software was employed to develop the dynamic model. Four conditions of models were tested including fixed bearing, as well as models with coefficients of friction of 0.04, 0.10 and 0.15 at tibial-tray interfaces to represent healthy and with debris appearance. A pair of nonlinear springs was positioned both anteriorly and posteriorly to represent ligamentous constraint. The dynamic model was developed to perform position driven motion from 0° to 135° of flexion angle with 0°, 10° and 15° of tibial rotation. The prosthesis components were subjected with a deep squatting force.

Results

Peak values of maximum shear stress for different coefficients of friction and fixed bearing, respectively, are shown in Figure 2. Peak value of maximum shear stress at tibial post of fixed bearing is significantly larger than mobile bearing with tibial rotation. The peak values are 63MPa and 46.7MPa with 10° and 15° tibial rotation respectively for fixed bearing while for mobile bearing the values range from 32MPa to 36.6MPa and from 35.3MPa to 40.6MPa with 10° and 15° tibial rotation respectively. It was found that peak value of maximum shear stress increases with coefficient of friction and tibial rotation. In contrast, with normal rotation, bearing mobility and surface friction do not give any significant effect on the shear stress at tibial post.

Discussion & Conclusions

Appearance of second articulations in mobile bearing TKA provides an attribute in reducing force transmission via implant-bone interface which leads to lower shear stress induced in tibial post due to transmitted moment. However, higher surface friction will result in larger frictional force, which in turn induce larger moment at tibial post. Higher conformity will attribute to higher cross-shear level during knee motion. As a result, wear damage at tibiofemoral articular surface of mobile insert become worse.


Email: