header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SMART TRIALS ASSIST PLACEMENT, ALIGNMENT AND BALANCE IN PRIMARY TKA

Current Concepts in Joint Replacement (CCJR) – Winter 2015 meeting (9–12 December).



Abstract

Fifteen-year survivorship studies demonstrate that total knee replacements have excellent survivorship, with reports of 85 to 97%. However, excellent survivorship does not equate to excellent patient reported outcomes. Noble et al reported that 14% of their patients were dissatisfied with their outcome with more than half expressing problems with routine activities of daily living. There is also a difference in the patient's subjective assessment of outcome and the surgeon's objective assessment. Dickstein et al reported that a third of total knee patients were dissatisfied, even though the surgeons felt that their results were excellent. Most of the patients who report lower outcome scores due so because their expectations are not being fulfilled by the total knee replacement surgery.

Perhaps this dissatisfaction is a result of subtle soft tissue imbalance that we have difficulty in assessing intraoperatively and postoperatively. Soft tissue balancing techniques still rely on subjective feel for appropriate ligamentous tension by the surgeon. Surgical experience and case volume play a major role in each surgeon's relative skill in balancing the knee properly.

New technology of “smart trials” with embedded microelectronics and accelerometers, used in the knee with the medial retinaculum closed, can provide dynamic, intraoperative feedback regarding knee and component alignment along with quantitative compartment pressures and component tracking. After all bone cuts are made using the surgeon's preferred techniques, trial components with the sensored tibial trial are inserted and the knee is taken through a passive range of motion. After visualizing the resultant compartment pressures and tracking data on a graphical interface, the surgeon can decide whether to perform a soft tissue balance or minor bone recuts. If soft tissue balancing is performed, the surgeon can assess the pressure changes as titrated soft tissue releases are performed.

A multicenter study using smart trials has demonstrated dramatically better outcomes at six months and one year.