header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CARPAL KINEMATICS DURING SIMULATED WRIST MOTION

Canadian Orthopaedic Association (COA) and Canadian Orthopaedic Research Society (CORS) Annual Meeting, June 2016; PART 1.



Abstract

Wrist motion is achieved primarily via rotation at the radiocarpal and midcarpal joints. The contribution of each carpal bone to total range of motion has been previously investigated, although there is no consensus regarding the influence of each structure to global wrist motion. The objective of this comprehensive in-vitro biomechanical study was to determine the kinematics of the capitate, scaphoid and lunate during unconstrained simulated wrist flexion-extension. In addition, this study examined the effect of motion direction (i.e. flexion or extension) on the kinematics and contribution of the carpal bones.

Seven fresh frozen cadaveric upper limb specimens (age: 67±18 yrs) were amputated mid-humerus, and the wrist flexors/extensors were exposed and sutured at their musculotendinous junctions. Each specimen was mounted on a wrist motion simulator in neutral forearm rotation with the elbow at 90° flexion. Passive flexion and extension motion of the wrist was simulated by moving a K-wire, inserted into the third metacarpal, through the flexion/extension motion arc at a speed of ∼5 mm/sec under muscle tone loads of 10N. Carpal kinematics were captured using optical tracking of bone fixated markers. Kinematic data was analysed from ±35° flexion/extension.

Scaphoid and lunate motion differed between wrist flexion and extension, but correlated linearly (R^2=0.99,0.97) with capitate motion. In wrist extension, the scaphoid (p=0.03) and lunate (p=0.01) extended 83±19% & 37±18% respectively relative to the capitate. In wrist flexion, the scaphoid (p=1.0) and lunate (p=0.01) flexed 95±20% and 70±12% respectively relative to the capitate. The ratio of carpal rotation to global wrist rotation decreased as the wrist moved from flexion to extension. The lunate rotates on average 46±25% less than the capitate and 35±31% less than the scaphoid during global wrist motion (p=0.01). The scaphoid rotates on average 11±19% less than the capitate during wrist flexion and extension (p=0.07). There was no difference in the contribution of carpal bone motion to global wrist motion during flexion (p=0.26) or extension (p=0.78).

The capitate, lunate and scaphoid move synergistically throughout planar motions of the wrist. Our study found that both the scaphoid and lunate contributed at a greater degree during wrist flexion compared to extension, suggesting that the radiocarpal joint plays a more critical role in wrist flexion. Our results agree with previous studies demonstrating that the scaphoid and lunate do not contribute equally to wrist motion and do not function as a single unit during planar wrist motion. The large magnitude of differential rotation observed between the scaphoid and lunate may be responsible for the high incidence of scapholunate ligament injuries relative to other intercarpal ligaments. An understanding of normal carpal kinematics may assist in developing more durable wrist arthroplasty designs.


Email: