header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CEMENTED POLYETHYLENE CUP IN METAL-ON-METAL HIP RESURFACING: A SALVAGE PROCEDURE?

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 2.



Abstract

As there are many reports describing avascular reactions to metal debris (ARMD) after Metal-on-Metal Hip Arthroplasty (MoMHA), the use of MoMHA, especially hip resurfacing, is decreasing worldwide. In cases of ARMD or a rise of metal ion blood levels, revision is commended even in pain free patients with a well integrated implant. The revision of a well integrated implant will cause bone loss. As most of the patients with a hip resurfacing are young and a good bone stock is desirable for further revision surgeries, the purpose of this study was to evaluate the stability of a cemented polyethylene cup in a metal hip resurfacing cup. Two different hip resurfacing systems were investigated in this study (ASR™, DePuy Orthopaedics, Leatherhead, UK; Cormet™, Corin Group, Cirencester, UK).

Six different groups were formed according to the treatment and preparation of the cement-cup-interface (table 1). Before instilling cement in groups 1, 3, 5 the surface, which was contaminated with blood, was cleaned just using a gauze bandage. In groups 2, 4, 6 saline, polyhexanid and a gauze were used to clean the surface prior to the cement application. In group one and two the polyethylene cup (PE) was cemented either into Cormet™ or ASR™, just the ASR™ was further investigated in group three to six. A monoaxial load was applied while the cup was fixed with 45 degrees inclination (group 1–4) and 90 degrees inclination (group 5, 6: rotatory stability) and the failure torque was measured. In contrast to group 1 and 2, the cement penetrated the peripheral groove of the ASR™ in groups 3–6. The mean failure torque of five tests for each group was compared between the groups and the implants.

The ASR™ showed mean failure torque of 0.1 Nm in group one, of 0.14 Nm in group two, of 56.9 Nm in group three, of 61.5 Nm in group four, of 2.96 Nm in group five and of 3.04 Nm in group six. The mean failure torque of the Cormet™ was 0.14 Nm both in groups one and two (table 2). In groups 1–6 there were no significant differences between the different preparations of the interface. Furthermore, in groups 1 and 2 there were no significant differences between the Cormet™ and the ASR™. The mean failure torque of group 4 was significant increased compared to group 3 (p=0.008).

We saw an early failure of the cement fixation due to the smooth surface of the Cormet™ and the ASR™ components in groups 1, 2, 5, 6. In contrast to other hip resurfacing cups the ASR™ has a peripheral groove, which was not cemented except in groups 3 and 4 and therefore the lever-out failure torque was significant increased in these groups. Nevertheless, the groove did not provide stability of the cement-PE compound in case of rotatory movements. In conclusion we do not recommend the use of these methods in clinical routine. The complete removal of hip resurfacing components seems to be the most reasonable procedure.


Email: