header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE RELATIONSHIP BETWEEN MINERAL TO COLLAGEN RATIO, ULTRASTRUCTURE AND MECHANICAL PROPERTIES: DIFFERENCES WITHIN A SINGLE SPECIES

The British Orthopaedic Research Society (BORS) Annual Conference, September 2016



Abstract

Bone has a number of different functions in the skeleton including the physical roles of support, protection and sound wave conduction. The mechanical properties, required for these different functions varies and can be achieved by compositional adaption of the bone material, in addition to changes in shape and architecture. A number of previous studies have demonstrated the relationship between mechanical function and mineral to collagen ratio in bones from different species.

The aim of this study is to test the hypothesis that the mineral to collagen ratio is higher in bone with a mechanically harder matrix within a species.

The red deer (Cervus elaphus) (n=6) was chosen as a model for studying bone with extreme properties. The mechanical properties of the antler, metacarpal bone and tympanic bulla were defined by indentation using a bench-top indentation platform (Biodent). The mineral to collagen ratio was quantified using Raman spectroscopy. The deposition of mineral was studied at macro-level using pQCT.

The results showed that the hardness (Indentation Distance Increase) was lowest in the metacarpal (8.5µm), followed by the bulla bone (9.4µm) and highest in the antler (14.5µm). Raman spectroscopy showed a mineral:collagen ratio of 1:0.10 (bulla), 1:0.13 (metacarpal) and 1:0.15 (antler) for the different bones. This does not follow the more linear trend previously shown between young's modulus and the mineral:collagen ratio. The location of the mineral appeared to differ between bone types with pQCT revealing locations of concentrated density and banding patterns in antler. Interestingly, Raman spectra showed differences in the amide peaks revealing differences in protein structure.

The results reject the hypothesis but also suggest that the organisation of mineral and collagen has an impact on the hardness modulus. We demonstrate that the red deer provides a good model for studying bone specialisation. This work will provide the basis for further investigation into collagen as a controlling factor in mineral deposition.