header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

THE QUEST FOR LONGEVITY IN THE TOTAL HIP REPLACEMENT: A CONCEPT STUDY OF DESIGN ELEMENTS USING FINITE ELEMENT ANALYSIS

The International Society for Technology in Arthroplasty (ISTA), 27th Annual Congress. PART 1.



Abstract

Introduction

Total hip replacement is an established surgical procedure done to alleviate hip pain due to joint diseases. However, this procedure is avoided in yonger patients with higher functional demands due to the potential for early failure. An ideal prosthesis will have have a high endurance against impact loading, with minimal micromotion at the bone cement interface, and a reduced risk of fatigue failure, with a favourable stress distribution pattern in the femur. We study the effect of varying the material properties and design element in a standard cemented total hip using Finite Element Analysis.

Methods

A patient-specific 3D model of femur will be constructed from CT scan data, while a Summit® Cemented Hip System (DePuy Orthopedic) will be used to as a control for comparative evaluation. We vary the material stiffness of different parts of the prosthesis(see Fig.1) to formulate a design concept for a new total hip prosthesis design; and use Finite Element Method to predict the micromotion of the hip prosthesis at the bone cement interface, as well as the stress distribution in the the femur.

Result

Validation of computational protocol was being done by comparing the principal maximum strain of the femoral cortex along the diaphysis, and the amount of deflection, with published literature, similarly, contact modelling validation was also done. Model 1–4 induced lower peak Von Mises stress in the cement, which takes a much lower value than any of the cement mechanical limits postulated. Therefore, the risk of cement failure is greatly reduced in Model 1–4. However, the effect of varying stiffness in different regions is not significant in terms of load transmission to the cement. Micromotion at the bone-cement interface was studied via two approaches: Peak micromotion at the bone cement interface; and the micromotion data at 12 Regions of Interest (ROI)s. Both results showed that model 2 and 3 are capable of reducing micromotion at bone-cement interface, in comparison with the Summit® Cemented Hip System. By comparing the Von Mises Stress distribution in the proximal femur; model 1 is found to result in a significantly reduced stress shielding effect, while model 2–4 are also favourable in comparison to the standard Summit® prosthesis in terms of stress distribution in the femur. Figure 2 shows the effects of the performance of model 1–4, presented as percentage difference from the Summit® prosthesis. Model 1 is unfavourable, despite its favourable stress distribution, because its peak and overall micromotion at the bone-cement interface is greatly increased.

Conclusion

Model 2 and 3 have favourable design elements. They both have reduced micromotion at the bone-cement interface; and a favourable stress distribution in the femur. Further refining and testing of model 2 and 3 should done, as these models may provide information which may be useful in improving the performance of the current range of total hip replacement prostheses.


*Email: