header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

LAMINAR AIRFLOW REDUCES MICROBIAL AIR CONTAMINATION IN COMPARISON WITH TURBULENT AIRFLOW DURING SIMULATED TOTAL HIP ARTHROPLASTY SURGERY

European Bone And Joint Infection Society (EBJIS) 34th Annual Meeting: PART 2



Abstract

To compare the number of airborne bacteria and particles under laminar airflow (LAF) versus turbulent airflow (TAF) with 100% and 50% reduced fresh air exchange during simulated total hip arthroplasty (THA)

Two equally dimensioned operating rooms (OR) build in 2009 with modern ventilation systems of LAF and TAF respectively were used during 32 simulated THA-operations under four different ventilation conditions: LAF or TAF with either full (n=8+8) or 50% reduced (n=8+8) fresh air exchange volume.

We followed a protocol controlling the complete perioperative setup including interior cleaning, sterile materials, OR-personnel procedures, surgical clothing, instruments and 50-minute surgical procedure on a full-sized dummy at 37°C.

Microbial contamination was determined intra-operatively by ISO-validated Microbiological Active Sampler (MAS-100, Merck, 100 L/min) at two 10-minute intervals in 30 cm distance of the operating field. Blood-agar plates from each operation were incubated for 2 days at 35°C and the microbial concentration was determined by viable counting of colony-forming units (CFU) per m3 air.

Furthermore airborne particulate (0,5–10 µm) was sampled with ISO-validated light scattering particle analyzer (MET-one, Beckman Coulter, 28,3 L/min) during the 50-minute surgical procedure (1,42 m3/operation). Large particle sizes (>5 µm) are correlated with microbial contamination (Stocks, 2010). According to standards large-sized particle number must not exceed a 2.900/m3-threshold for cleanroom operations.

Microbial air concentration (mean CFU/m3 ±standard deviation) under LAF conditions with full and 50% reduced fresh air exchange were 0,4±0,8 and 0,4±0,4 respectively, whereas air contamination under TAF conditions were significantly higher with 7,6±2,0 and 10,3±8,1 (p<0,05).

Large (>5 µm) airborne particulate (mean no./m3 ±standard deviation) under LAF conditions with full and 50% reduced fresh air exchange were 1.581±2.841 and 1.018±1.084 respectively, whereas particulate under TAF conditions were 7.923±5.151 and 6.157±2.439 respectively.

Microbial air contamination was significantly lower under LAF ventilation compared to TAF during simulated THA under both full and 50% reduced fresh air exchange in modern operating theatres used in daily clinic. The number of particles measured under TAF conditions exceeded the threshold for cleanroom operations in 12/16 simulated operations. These findings indicate that LAF reduces the airborne microbial risk factor of surgical site infection in comparison to TAF.


E-mail: