header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DOES A STRETCHING EXERCISE PROGRAMME RESULT IN AN INCREASED RANGE OF MOVEMENT BY CAUSING CHANGES TO THE EXTENSIBILITY OF THE MUSCLE/TENDON TISSUE?

British Society for Matrix Biology (BSMB) Satellite Meeting: ‘Advances in Tendon Research: From Bench to Bedside’



Abstract

Introduction

Regular, repeated stretching increases joint range of movement (RoM), however the physiology underlying this is not well understood. The traditional view is that increased flexibility after stretching is due to an increase in muscle length or stiffness whereas recent research suggests that increased flexibility is due to modification of tolerance to stretching discomfort/pain. If the pain tolerance theory is correct the same degree of micro-damage to muscle fibres should be demonstrable at the end of RoM before and after a period of stretch training. We hypothesise that increased RoM following a 3 weeks hamstrings static stretching exercise programme may partly be due to adaptive changes in the muscle/tendon tissue.

Materials and Methods

Knee angle and torque were recorded in healthy male subjects (n=18) during a maximum knee extension to sensation of pain. Muscle soreness (pain, creatine kinase activity, isometric active torque, RoM) was assessed before knee extension, and 24 and 48 hours after maximum stretch. An exercise group (n=10) was given a daily home hamstring stretching programme and reassessed after 3 weeks and compared to a control group (n=8). At reassessment each subject's hamstring muscles were stretched to the same maximum knee extension joint angle as determined on the first testing occasion. After 24 hours, a reassessment of maximum knee extension angle was made.

Results

At the start of the study RoM was 71.3 ± 10.0 degrees and there was no significant difference between groups. After 3 weeks stretching RoM increased significantly (p=0.01) by 9 degrees; the control group showed no change. Stiffness did not differ for either group. Pain score and RoM were the most sensitive markers of muscle damage and were significantly changed 24 and 48 hours after the initial stretch to end of range, (p<0.005) and (p=0.004) respectively.

Discussion

The results show that a 3 week stretching programme causes muscle adaptation resulting in an increase in the extensibility of the hamstring muscle/tendon unit but no change in stiffness. The lack of evidence of muscle damage suggests that participants in the stretching group are likely to have undergone a physical change/adaptation rather than simply an increase in pain threshold.


Email: