header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

S100A9 INDUCED VESSEL INJURY IN OSTEONECROSIS OF FEMORAL HEAD

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

Osteonecrosis of the femoral head (ONFH) is a multifactorial skeletal disorder. S100A9 represseses angiogenesis and vessel integrity in ONFH. It also may function as a marker of diagnosis in ONFH.

Introduction

Osteonecrosis of the femoral head (ONFH) is a multifactorial skeletal disorder characterised by ischemic deterioration, bone marrow edema and eventually femoral head collapse and joint destruction. Several surgical, pharmaceutical and non-invasive biophysical modalities have been employed to alleviate this joint disorder. Our proteomic analysis showed that ONFH patients displayed increased expression of S100A9 protein when compared with healthy volunteers. This study is designed to evaluate the pathogenesis of S100A9 on the patients of ONFH.

Patients & Methods

We collected 56 patients with ONFH including stage I, II, III and IV and 14 health volunteers. 20 ml of peripheral venous blood is drawn from each subject or prior to general anesthesia for hip arthroplasty. We compared the ELISA of S100A9, Osteocalcin, TRAP-5b, sVCAM-1. Immunohistochemistry of S100A9, vWF and VEGF are compared using femoral head harvested from late stages of ONFH and femoral neck fracture when received hip arthroplasty. In vitro angiogenic assay was performed by tube formation assay.

Results

There were significant elevation of S100A9 in the serum of ONFH patients then in healthy volunteers. sVCAM-1 and TRAP-5b were increased and Osteocalcin was decreased in ONFH patient when comapred with healthy volunteers. The expression of S100A9 protein in ONFH tissue was significantly higher than femoral neck fracture tissue. In tube formation assay, we found S100A9 and the serum of ONFH patient supressed angiogenesis in vascular endothelial cell culture.

Discussion/Conclusion

The expression of S100A9 significantly increased in the serum and femoral head tissue of patients with ONFH. S100A9 also supressed angiogenesis expression. The results indicated that S100A9 represseses angiogenesis and vessel integrity in ONFH. It also may function as a marker of diagnosis in ONFH.