header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

COBALT-CHROME DEBRIS BUT NOT ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMPWE) DEBRIS REGULATES CXCR4 EXPRESSION IN VIVO AND IN VITRO

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

CXCR4 gene and protein expression is regulated in a dose and time-dependent manner by metallic wear debris but not polyethylene wear debris in vitro and in vivo.

Introduction

Progressive osteolysis leading to aseptic loosening among metal-on-metal (MoM) total hip arthroplasties (THA's), and adverse reactions to metallic debris (ARMD) are increasing causes for concern among existing patients who have been implanted with MoM hip replacements. Close surveillance of these patients is necessary and difficulties lie in early detection as well as differentiating low-grade infection from ARMD in the early stages. Several inflammatory markers have been investigated in this context, but to date, none is specific with regards to the offending material. In earlier studies, it has been shown that osteoblastic phenotypes and differentiation are regulated by different types of wear particles.

Methods

In vitro experiments were performed using MG63 and SaOs-2 osteoblast-like cells co-cultured with increasing concentrations of metallic (Co-35Ni-20Cr-10Mo and Co-28Cr-6Mo) and polyethylene (UHMWPE-GUR1020) particles simulating periprosthetic wear debris. Real-time Polymerase Chain Reaction (RT-PCR) and Western Blotting were used to quantify gene and protein expression of CXCR4. The expression of TNF-a and the effects of AMD3100 on both CXCR4 and TNF-a expression among these cells was also investigated. Immunohistochemical techniques were used to investigate the in-vivo expression of CXCR4 in retrieval tissues obtained from 2 cohorts of failed metal-on-metal and ceramic-on-polyethylene THA's.

Results

In-vitro RT-PCR and experiments demonstrated a dose-dependent increase in CXCR4 mRNA (7.5 fold for MG63 and 4.0 fold for SaOs-2 cells) among cells co-cultured with metal alloy particles. Western blotting also showed a time-dependent increase in protein expression of CXCR4. No regulatory effects on CXCR4 gene expression were seen among cells co-cultured with UHMWPE particles. The attempted blockade of CXCR4 by it's known competitive receptor agonist AMD3100 (bicyclam) led to a significant inhibition of metal particle induced TNF-a mRNA expression. In-vivo immunohistochemical data from the 2 cohorts of patients with failed THA's showed CXCR4 positivity among 83% of patients with metal-on-metal hip replacements but none among ceramic-on-polyethylene hip replacements.

Discussion/Conclusion

CXCR4, the chemokine receptor for the chemokine SDF-1 (stromal cell derived factor-1), has been shown to play a pivotal role in bone metastasis, inflammatory and autoimmune conditions but has not been investigated in the context of periprosthetic osteolysis in failed joint replacements. Our in-vivo and in-vitro findings collectively suggest that the CXCR4 chemokine is specifically upregulated in a dose and time-dependent manner in the presence of metallic (cobalt-chrome) wear debris but not by polyethylene wear debris. The CXCR4 chemokine receptor may be a selective and specific biomarker for progressive osteolysis seen in failed MoM hip replacements and this phenomenon could potentially have a translational effect on the practice of orthopaedic surgery. Further research is needed to evaluate the interactions of CXCR4 with osteoclast activation and signalling pathways.