header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

SCAFFOLD AND SCAFFOLD-FREE STRATEGIES TOWARDS TENDON REPAIR

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary

Tissue grafts fail to recapitulate native tendon function, imposing the need for development of functional regeneration strategies. Herein, we describe advancements in tendon repair and regeneration using functionalised natural and synthetic devices and scaffold-free cell-based therapies.

Introduction

Tendon and ligament injuries constitute an unmet clinical need with approximately 100,000 new cases annually in US alone. Tissue grafts are considered the gold standard in clinical practice. However, allografts and xenografts can lead to potential disease transmission, whilst the limited supply of autografts in severe injuries and degenerative conditions restricts their use. To this end, scaffold and scaffold-free therapies are under development to address the tissue grafts shortage. Herein, we describe biophysical, biochemical and biological methods to maintain tendon derived cell phenotype and/or differentiation of other cell types towards tenogenic lineage; development of tendon-equivalent facsimiles; and ultimately functional neotendon formation.

Materials and Methods

Growth factor supplementation was assessed as means to either maintain tendon derived stem cell phenotype or differentiate them towards tenocytes. The influence of conditioning media was assessed as means to differentiate skin fibroblasts and stem cells towards tenogenic lineage. Biophysical and biochemical/biological features were assessed as means to maintain tendon derived cell phenotype and directional neotissue formation in rat patellar tendon model. Rich in tendon-specific extracellular matrix cell sheets were produced by appropriate modulation of the in vitro microenvironment. Structural, biophysical and biological analyses were subsequently carried out.

Discussion & Future Studies

Treatment with 10 and 100 ng/mL of IGF-1 preserved tendon stem cell multipotency for up to 28 days in culture and minimised changes in marker expression and extracellular matrix molecules production enhancing that way the clinical potential of these cells. Hierarchically assembled collagen scaffolds and anisotropically ordered polymeric substrates of rigidity similar to native tendons facilitate tenocyte phenotype maintenance in vitro, whilst in vivo studies are under way to assess the extent of functional tendon regeneration. Appropriate modulation of the in vitro microenvironment of tenocytes with macromolecules enhances tendon specific extracellular matrix deposition within 6 days in culture, facilitating that way the wide acceptance of cell-sheet technology for tendon repair and regeneration.