header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DEVELOPMENT OF A SYNTHETIC COLLATERAL LIGAMENT MODEL FOR USE IN AN IN VITRO KINEMATIC KNEE SIMULATOR

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

The tensile properties of a number of synthetic fibre constructs and porcine MCLs were experimentally determined and compared to allow the selection of an appropriate synthetic collateral ligament model for use in a kinematic knee simulator.

Introduction

As patient expectations regarding functional outcomes of total knee arthroplasty rise the need to assess the kinematics of new implants in vitro has increased. This has traditionally been done using cadaveric models, which can demonstrate high physiological relevance but also substantial inter-specimen variability. More recently there has been a shift towards the use of in silico and non-cadaveric methods. Such methods require significant simplifications of the joint and the modelling of soft tissue structures such as the collateral ligaments. Collateral ligaments are often modelled in in silico studies but have not, in the published literature, been modelled in in vitro knee kinematic simulators. Tensile testing of ligament tissue, to provide reference data, and the subsequent analysis of potential synthetic analogues was carried out. The overall aim of the study was to develop a synthetic ligament analogue for use in kinematic knee simulators.

Methods

Porcine MCLs were chosen as these are of a similar size and are a readily available alternative to human ligaments. Six porcine knee specimens were sourced and the MCLs dissected by an orthopaedic registrar. Testing was carried out on an Instron MTS fitted with a 5kN load cell. Each specimen was subjected to 5 pre-conditioning loading cycles before cross-sectional and length measurements were made. Each specimen was then cyclically loaded from 0–200N for 30 cycles before being loaded to failure at a rate of 100mm/min. Ten potential synthetic analogues were also assessed using the same procedure: the Lars 80 (Corin Ltd) synthetic ligament reconstruction system and a selection of readily available synthetic constructs.

Results

The porcine specimens demonstrated 6% ± 1% strain (mean ± standard error) after 30 cycles of loading, and a tensile stiffness of 100 N/mm ± 8.9 N/mm. The results of the load to failure tests also indicated a substantial toe region and highlighted the substantial variability associated with cadaveric specimens. The Lars system demonstrated a tensile stiffness of nearly 9 times that of the porcine specimens. However, non-parametric Mann-Whitney U analyses indicated that three of the synthetic samples did not have statistically significantly different tensile stiffness values compared to the porcine specimens (p < 0.05). Of these samples, the polyester braided cord demonstrated the longest and most physiologically relevant toe region. All of the polyester load-displacement traces fell within the range demonstrated by the porcine specimens.

Discussion/Conclusion

The tensile properties of the porcine specimens analysed were similar to those reported in in the literature for human ligaments1. Porcine MCLs are thus a fair model of human collateral ligaments and were a suitable reference material for the selection of a synthetic analogue. The tensile testing carried out in the present study indicated that commercially available synthetic ligaments are over engineered in terms of strength and inappropriate for use in kinematic analysis. However, a polyester braided cord did demonstrate appropriate basic mechanical properties and would be appropriate as an analogue model on kinematic knee rigs.