header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE EFFECT OF STERILISATION METHODS ON THE OSTEOCONDUCTIVITY OF ALLOGRAFT BONE IN A CRITICAL-SIZED BILATERAL TIBIAL DEFECT MODEL IN RABBITS

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

Supercritical fluid (SCF) sterilization produces clean and osteoconductive allograft bone capable of healing a critical-sised bony defect. SCF treated graft induces an increased anabolic response and decreased catabolic reponse compared to gamma irradiated graft.

Introduction

Clinically, allogeneic bone graft is used extensively because it avoids the donor site morbidity associated with autograft. However, there are concerns over the optimal sterilization method to eliminate immunological risks whilst maintaining the biological efficacy of the graft. This study compared the effect of Supercritical fluid (SCF) sterilization and gamma irradiation on the osteoconductivity of allograft bone in a bilateral critical-sised defect rabbit model.

Methods

Cortical-cancellous allograft bone was milled, defatted and terminally sterilised with either gamma irradiation at 25kGy or SCF treatment. The graft was then implanted bilaterally into a critical-sised metaphyseal defect in 10 New Zealand White rabbits (n=5 sites per time point per group). Osteoconductivity was evaluated at 2 and 4 weeks to measure the early inflammatory response and early new bone formation respectively, using X-ray, CT, and both qualitative and quantitative histology and immunohistochemistry (Alkaline Phosphatase and Cathepsin-K).

Results

Both grafts were well tolerated and osteoconductive. At 2 weeks, there were significant reductions in bone volume and density in the gamma irradiated graft compared to the SCF treated graft as measured by CT. Inside the defect this corresponded with a greater inflammatory response in the gamma irradiated graft, with a less organised fibrous tissue infiltration and mild granuloma reaction. Conversely, the SCF group had a highly organised and densely packed fibrous tissue infiltration around the allograft chips. Immunohistochemistry results supported these findings with an up-regulation in the expression and distribution of Cathepsin-K in the gamma irradiation group; while Alkaline Phosphatase expression was higher in the SCF group. At 4 weeks, resorptive behavior predominated in both groups. Radiographic and CT results detected no significant difference between groups. Histology at 4 weeks showed larger bone chips were undergoing substantial remodeling with areas of simultaneous osteoclastic resorption and osteoblastic new bone formation. Smaller allograft chips and areas of new bone formation were infiltrated by fibrous tissue and undergoing osteoclastic resorption. Quantitative immunohistochemistry showed an up-regulation of Cathepsin-K expression in both groups from 2 to 4 weeks. At both time points Cathepsin-K expression was higher in the gamma irradiated graft compared to the SCF group. This was greatest at 2 weeks where there was a substantial 82% increase in expression which was reduced to a 38% discrepancy at 4 weeks. Alkaline Phosphatase expression was greater in the SCF group at both time-points.

Discussion/Conclusion

Allograft bone sterilised with either gamma irradiation or SCF treatment was osteoconductive and capable of healing a critical-sised defect in a rabbit. Gamma irradiated allografts elicited an acute inflammatory reaction when implanted which increased the amount graft resorption compared to the SCF treated bone. Increased osteoclastic resorption may be a concern for structural graft applications leaving the graft more susceptible to premature failure. SCF sterilization produced a clean, highly biocompatible graft with increased anabolic activity compared to gamma irradiation which may facilitate earlier healing clinically. These results suggest that SCF sterilization has considerable expediency for allograft processing and may facilitate more optimal extraction of the inherent properties of the graft compared to current practices.