header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOACTIVE NATURAL COMPOUNDS FOR TREATING BONE RESORPTION DISEASES

8th Combined Meeting Of Orthopaedic Research Societies (CORS)



Abstract

Summary Statement

In this study it has been considered an alternative therapeutic approach to bone resorption diseases by using plant decoctions to improve adherence from patients to the treatment. In this context, Hemidesmus indicus represents a possible therapeutic or adjuvant natural compound.

Introduction

The acceleration of bone remodelling, with an excessive osteoclastogenesis or activation of mature osteoclasts, causes the loss of bone mass which is implicated in bone resorption diseases. Conventional therapies are expensive and limited by systemic toxicity and low drug bioavailability. Alternative treatments that are not only effective but also administered employing formulations and dosages different from conventional ones, may improve adherence to therapy, having a positive influence on clinical outcomes. Experimental evidence have attributed antiproliferative and apoptosis inducing activity on different cell lines (including osteoclast precursors or mature osteoclasts) to four plants used in Ayurvedic medicine: Asparagus racemosus (AR), Emblica officinalis (EO), Hemidesmus indicus (HI) and Rubia cordifolia (RC) These properties could be helpful in the treatment of some bone resorption diseases. In order to clarify the possible therapeutic effects of these compounds, the anti-osteoclast activity of their decoctions were evaluated.

Methods

The anti-osteoclast activity of natural compounds was evaluated on primary cultures of human osteoclasts generated by isolating peripheral blood monocytes from buffy coat and treating cells with medium supplemented with differentiating factors. To evaluate the effect on osteoclastogenesis, osteoclast precursors were treated with different concentrations of plant decoctions and characterised by the formation of multinucleated cells and the expression of tartrate-resistant acid phosphatase. To evaluate the osteoclasts apoptosis inducing activity mature osteoclasts were treated with the compounds and stained with Hoechst 33258, to make clear the possible nuclear pyknosis, and phalloidin-TRITC to highlight the structure of the typical osteoclast actin ring. The toxicity of compounds on osteogenic precursors was evaluated by the Alamar Blue assay after 7 days of cells treatment with bioactive concentrations of decoctions.

Results

At the higher concentrations, all the decoctions had inhibited osteoclastogenesis with an effect similar to that of alendronate (positive control), but only HI was effective like alendronate at lower concentrations. The percentage of apoptotic osteoclasts was very low in control cultures (30 ± 2%), but increased significantly when cells were exposed to the highest concentration of EO (P < 0.001), HI (P < 0.001), and RC (P < 0.05). It was not observed the same effect when cells were exposed to the highest concentration of AR. At the highest concentrations AR has completely inhibited the proliferation of osteogenic precursors, EO was toxic at all tested concentrations, while RC was toxic only at the highest ones. On the contrary, HI showed absence of toxicity on osteogenic precursors at all tested concentrations.

Conclusion

An ideal anti-resorption drug should exert an anti-osteoclastic activity without interfering with the proliferative capacity of osteogenic precursors. For these reasons, among all the plants evaluated in this study, HI represents a possible therapeutic candidate. In fact, it demonstrated the greater effectiveness of anti-osteoclast activity, both in terms of inhibition of osteoclastogenesis that induction of apoptosis, but showed no toxicity on osteogenic precursors.