header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Friction Factors of Various Metal on Plastic Hip Replacement Designs With Scratched Femoral Heads Captured During Testing on a Multi-Station Hip Simulator

International Society for Technology in Arthroplasty (ISTA)



Abstract

Damage to metallic femoral heads can occur in vivo. Testing of hip prostheses under abrasive conditions is one among various efforts needed towards more realistic and harsher testing. Abrasion likely increases both wear and friction at the head/liner interface. This study investigates if our novel friction measurement technique can detect damage to femoral heads during extended wear testing of metal-on-plastic (MOP) THRs of various material combinations using both scratched and as-new femoral heads.

Friction was measured based on equilibrium of forces and moments measured by a 6-DOF load cell on each test station of an AMTI hip simulator. The force and moment data from the load cells was utilized to calculate the frictional torque about each of three rotational axes (flexion/extension, abduction/adduction and internal/external rotation). The frictional torques were transformed to account for the offset in load cell position from the hip center and were then vector summed to yield an overall frictional torque about the femoral head. The friction factor was then computed by dividing the overall frictional torque by the applied compressive load and the femoral head radius. The waveforms specified in ISO-14242-1 were used. Diluted bovine serum at 37°C with 30 g/L protein concentration lubricated the specimens.

Twelve UHMWPE liners (40 mm I.D.) were tested against CoCrMo femoral heads. Liners were of three materials: a) Three conventional (GUR1020, gamma-sterilized 3.5 Mrad), b) Three highly cross-linked (HXL) (GUR 1020, 10 Mrad, annealed, EtO-sterilized, artificially aged), and c) Six HXL w/vitamin-E (GUR 1020, 12 Mrad, annealed, EtO-sterilized, aged).

The test consisted of three phases were as follows:

  1. Phase-I: Standard clean (non-abrasive) test for 5 Mc.

  2. Phase-II: Pulverized PMMA was added to serum at 700 mg/L (to introduce abrasive conditions); however, effects were minimal after 2 Mc (7 Mc total).

  3. Phase-III: Femoral heads were scratched using a technique developed in house to create latitudinal and longitudinal scratches similar to what is seen on retrievals. Phase-III lasted for 1 Mc, for a total of 8 Mc.

The friction results are shown in Fig. 1. Friction factors of the three THR types tested were similar for the first 5 Mc (0.062 ± 0.0084) and increased only marginally after the PMMA powder was added (0.066 ± 0.0066). The PMMA powder did not appear to damage the heads much visually, and therefore the insignificant increase was not surprising. However, once heads were intentionally scratched at 7 Mc, the friction factor rose on all three THR types: a) 0.11 ± 0.0077, b) 0.082 ± 0.0049, c) 0.087 ± 0.022.

This friction technique successfully detected when femoral head damage had occurred. Higher friction was clearly observed after femoral heads had been scratched.


*Email: