header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Biomechanic Characterisation of an All-Polyethylene Pegged Bone in-Growth Glenoid: Is Cementation Necessary?

International Society for Technology in Arthroplasty (ISTA)



Abstract

Purpose:

Glenoid loosening persists as a common cause of anatomic total shoulder arthroplasty (TSA) failure. Considering radiographic evidence of loosening as an endpoint, TSA has a reported survivorship of only 51.5% at 10 years. Component loosening may be related to cementation and it is postulated that poor cement penetration and heat-induced necrosis may partially be responsible. There is a growing interest among surgeons to minimize or abandon cement fixation and rely on biologic fixation to the polyethylene for long-term fixation. De Wilde et al. reported promising early clinical and radiographic results using a pegged, all-polyethylene ingrowth glenoid design implanted without cement. The goal of this study was to compare glenoid micromotion in an all-polyethylene, centrally fluted pegged glenoid using 3 cement fixation techniques.

Materials and Methods:

Glenoid components (Anchor Peg Glenoid, Depuy Orthopaedics, Warsaw, IN, USA) (Figure 1) were implanted in polyurethane foam testing blocks with 3 different fixation methods (n = 5 per group). Group I glenoids were implanted with interference fit fixation with no added cement. Group II was implanted with a hybrid fixation, where only the peripheral pegs were cemented. Group III glenoids were fully cemented for implantation. Glenoid loosening was characterized according to ASTM Standard F-2028. The glenoid component and a 44 mm humeral head were mounted to a materials testing frame (858 Mini Bionix II, MTS Crop., Eden Prairie, MN, USA) with a 750N applied joint compressive force (Figure 1). A humeral head subluxation displacement of ± 0.5 mm was experimentally calculated as a value that simulates glenoid rim loading that may occur at higher load activities. For characterization of glenoid loosening, the humeral head was cycled 50,000 times along the superior-inferior glenoid axis, simulating approximately 5 years of device service. Glenoid distraction, compression, and superior-inferior glenoid migration were recorded with two differential variable reluctance transducers fixed to the glenoid prosthesis.

Results:

All glenoid components completed the 50,000 cycles of humeral head translation successfully. With respect to glenoid distraction (Figure 2), interference fit fixation had significantly greater distraction compared to both hybrid and fully cemented fixation (p < 0.001). Hybrid fixation also displayed significantly higher distraction compared to fully cemented fixation (p < 0.001). In terms of glenoid compression (Figure 2), hybrid cementation had significantly greater compression compared to both interference-fit and fully cemented fixation (p < 0.001).

Discussion:

This is the first biomechanics study comparing glenoid micromotion of a centrally fluted, pegged component using 3 different fixation techniques. Of all fixation methods, the fully cemented components displayed the least amount of motion in all parameters. Hybrid fixation exhibited lower distraction, higher compression, and comparable translation compared to interference-fit fixation. Results may indicate the differences in early motion and suggest little to no advantage of peripheral peg cementation over no cement with respect to initial fixation. Future studies are warranted to further evaluate interference-fit fixation as a viable option for implantation of a central fluted, all-polyethylene glenoid component.


*Email: