header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Subluxation of Metal-on-Metal Bearings–Evidence of 2-Body Cup Wear on CoCr Femoral Heads

International Society for Technology in Arthroplasty (ISTA)



Abstract

Damage to metal-on-metal bearings (MOM) has been varyingly described as “edge wear,” third-body abrasive wear and “rim-damage” (1–4). However, no distinction has been made between any of these proposed wear mechanisms. The goal of this study was to discover what features might differentiate between surface damage created by either 2-body or 3-body wear mechanisms in MOM bearings. The hypotheses were that surface damage created by impingement of the cup rim (2-body wear) would be i) linear on the micro-scale, ii) reveal transverse striations (in direction of the sliding rim), iii) have either no raised lip or have a single lip along one side of the track, and iv) have an asymmetrical surface profile across the track width.

Five cases with 28 mm MOM, five of 34–38 mm MOM, and five of 50–56 mm diameter were studied (N = 15). The main wear zone (MWZ) was measured in each MOM head and the number of 2-body wear tracks recorded in the non-wear (NWZ) and main wear zone (MWZ). Bearing damage was examined using a white-light interferometer (Zygo Newview 600; 5x lens) and a scanning electron microscope (Zeiss MA15). The depths and slopes were assessed across the width of the damage tracks.

Thirteen of the 15 MOM bearings showed wear tracks that exhibited all four of the hypothesized 2-body wear characteristics. These wear tracks will be referred to as “micro-segments”. While micro-segments visually appeared linear, microscopically they revealed a semi-lunar edge coupled with transverse striations leading to a linear edge. This indicated that during impingement episodes, the cup rim ploughed material from the CoCr surface at the semi-lunar edge (Fig. 1), thereby creating the abruptly raised lip on the linear edge of the track. This “snow plough effect” and its distinct edge effect can account for the asymmetrical surface profile. A different type of 2-body wear was identified and referred to as “furrows”. Furrows also visually appeared linear visually, but microscopically revealed longitudinal striations and a symmetrical surface profile (Fig. 2). Furrows had lips raised on both sides of the track, but not circumscribing the terminal ends of the track. Instead, the ends of the furrows are tapered smooth transitions to the articular surface.

Thus, 2-body tracks were found to be distinguishable from 3-body tracks (micro-grooves) and were classified as either micro-segments or furrows. Micro-segements supported hypotheses 1–3 and provided a clearer definition for hypothesis-4, while furrows only supported hypothesis 1. The divergence in features between micro-segments and furrows allude to different interactions between the bearing and cup rim that led to each type of track. While these data represent a small set of cases (n = 15) this evidence shows for the first time what was previously only suspected (2), that the CoCr rim can routinely create 2-body wear damage mechanisms in MOM femoral heads.


*Email: