header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The Influence of PCL, Extensor Mechanism, and Thigh Weight on the Flexion Gap in Total Knee Arthroplasty: A Cadaveric Study

International Society for Technology in Arthroplasty (ISTA)



Abstract

Objective:

Accurate measurement of the extension and flexion gap is important in total knee arthroplasty (TKA). Particularly, the flexion gap may be influenced by several factors; therefore, tension of the posterior cruciate ligament (PCL), knee extensor mechanism, and the thigh weight may need to be considered while estimating the flexion gap. However, there is no comprehensive study on the flexion gap, including an assessment of the influence of gravity on the gap. The purpose of this study is to investigate the influence of PCL, knee extensor mechanism, and thigh weight on the flexion gap by using a fresh frozen cadaver.

Methods:

A fresh frozen lower limb that included the pelvis was used for the assessments. The knee was resected by a measured resection technique and a femoral component was implanted to estimate the component gap. The knee was flexed by precisely 90 degrees using a computer navigation system. The flexion gap was measured in different situations: group A, PCL preserved and patella reduced; group B, PCL preserved and patella everted; group C, PCL resected and patella reduced; and group D, PCL resected and patella everted. In each group, the measurements were obtained under 3 different conditions: 1, knee flexed and the lower limb on the operation table under gravity, as is usually done in TKA; 2, hip and knee flexed 90 degrees to avoid the influence of gravity; and 3, knee set in the same position as in condition 1 and the thigh was held by hand to reduce the influence of the thigh weight.

Results:

The flexion gap differed according to groups and conditions. Group B was larger than group A in most conditions and group D was larger than group C. The flexion gap in group D was the largest among the 4 groups. The extensor mechanism had influences to the flexion gap (Table 1). In groups A and B, the flexion gaps were similar under conditions 1, 2, and 3; however, in groups C and D, the flexion gaps in condition 1 were smaller than those in conditions 2 and 3. The thigh weight condition had influences to the flexion gap when the PCL was resected (Table 2).

Conclusion:

This is the first systemic report about the influences of PCL, extensor mechanism, and thigh weight on flexion gap measurement in TKA. PCL, extensor mechanism, and thigh weight influence the flexion gap and should be considered during TKA surgery. Especially, careful consideration is necessary to estimate the flexion gap when the PCL is resected and the patella is everted because the flexion gap becomes much wider than other situations.


*Email: