header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Tibial Plateau Coverage in UKA: A Comparison of Patient Specific and Standard Implants

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction:

Tibial component fit, specifically significant overhang of tibial plateau or underhang of cortical bone, can lead to pain, loosening and subsidence. The purpose was to utilize morphometric data to compare size, match, and fit between patient specific and incrementally sized standard unicompartmental knee arthroplasty (UKA) implants.

Methods:

CT images of 20 medial UKA knees and 10 lateral UKA knees were retrospectively reviewed. Standard and patient-specific implants were modeled in CAD, utilizing sizing templates and patient-specific CAD Designs. Virtual surgery maximized coverage of tibial plateau while minimizing implant overhang. Tibial plateau implant coverage was evaluated for fit and incidence of overhang/undercoverage.

RESULTS:

Patient specific implants provided significantly greater cortical rim coverage versus incrementally sized standard implants, 77% v. 43% (range 41–46%) respectively medially (p < 0.0001) and 60% v. 37% (range 29–41%) laterally (p < 0.0001). Patient-specific and standard implants' arc length were evaluated for percent of implant edge on cortical bone, 84% v. 55% (range 48–59%) medially (p < 0.0001) and 79% v. 57% (range 53–60%) laterally (p < 0.0001). Average amount of overhang/undercoverage of cortical rim area differed in patient-specific and standard implants: 0.24 mm v. 0.46 mm maximum overhang, (p = 0.043); 0.87 mm vs. 3.01 mm maximum undercoverage medially (p < 0.0001); 0.14 mm vs. 0.59 mm maximum overhang, (p = 0.05); 1.19 mm vs. 2.26 mm maximum undercoverage laterally (p = 0.017). Anterior overhang yielded 25 −75% and 30–80% of medial and lateral implants respectively in standard implant group; no overhang in patient-specific implant group.

Conclusions:

Tibial plateau anatomy variability produces difficulty optimizing coverage and preventing significant implant overhang/undercoverage with standard unicompartmental implants. Using virtual implantation, standard implants were undersized to avoid overhang. However, we encountered significantly more overhang in standard implants versus patient specific cohort. This study removed variability matching tibial tray and femoral standard group implant placement. Patient-specific implants provide superior cortical bone coverage and fit while minimizing issues of overhang and undercoverage seen in standard implants.


*Email: