header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Scapular Neck Length Measurement and Distribution in the Reverse Shoulder Arthroplasty (RSA) Patient Population

International Society for Technology in Arthroplasty (ISTA)



Abstract

Introduction:

The complex 3D geometry of the scapula and the variability among individuals makes it difficult to precisely quantify its morphometric features. Recently, the scapular neck has been recognized as an important morphometric parameter particularly due to the role it plays in scapular notching, which occurs when the humeral component of a reverse shoulder arthroplasty (RSA) prosthesis engages the posterior column of the scapula causing mechanical impingement and osseous wear. Prosthetic design and positioning of the glenoid component have been accepted as two major factors associated with the onset of notching in the RSA patient population. The present image-based study aimed to develop an objective 3D approach of measuring scapular neck, which when measured pre-operatively, may identify individuals at risk for notching.

Materials and Methods:

A group of 81 subjects (41 M, 69.7 ± 8.9 yrs.; 40 F, 70.9 ± 8.1 yrs.) treated with RSA were evaluated in this study. The 3D point-cloud of the scapular geometry was obtained from pre-operative computed tomography (CT) scans and rendered in Mimics. Subsequently, a subject-specific glenoid coordinate system was established, using the extracted glenoid surface of each scapula as a coordinate reference. The principal component analysis approach was used to establish three orthogonal coordinate axes in the geometric center of the glenoid. Utilization of glenoid-specific reference planes (glenoid, major axis, and minor axis plane) were selected in order to remove subjectivity in assessing “true” anterior/posterior and profile views of the scapula. The scapular neck length was defined as the orthogonal distance between the glenoid surface and the point on the posterior column with the significant change of curvature (Fig. 1). In addition, the angle between the glenoid plane, area center of the glenoid, and the point of significant change of the curvature were assessed (Fig. 2). This new parameter was developed to serve as a predictive critical value for the occurrence of notching. The incidence of notching increases as the value of the notching angle decreases. In order to evaluate relationships between glenoid and scapular neck, the glenoid width and height was also measured at the glenoid plane.

Results:

Glenoid neck length and notching angle within the population were normally distributed with mean values of 7.8 ± 2.3 mm and 19.6 ± 4.8°, respectively (Fig. 3). No gender difference was found (p = 0.676). In one subject, a glenoid neck length of less than 1 mm was measured with the notching angle less than 2.5°. No association between glenoid neck length and glenoid size were identified (vs. glen. height r2 = 0.001, and vs. glen. width r2 = 0.05).

Conclusion:

The present study reported on the scapular neck length and notching angle as measureable morphometric parameters that follow a normal distribution throughout the population and that are not correlated to the subject's glenoid size. Pre-operative acquisition of these novel and unique CT-based measurements may promote more appropriate RSA prosthesis selection to account for subject-specific anatomy in an effort to avoid scapular notching. Inferior placement of a baseplate or lateralization of glenoid component center of rotation (either biologically or mechanically) both serves to theoretically increase the notching angle.


*Email: