header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Ceramic Total Knee Replacements: Do They Produce Less Wear?

International Society for Technology in Arthroplasty (ISTA)



Abstract

As allergic reactions to implant wear are gaining more attention [4], the incorporation of ceramic materials to device design appears to be a promising development. In particular, ceramic femoral components of total knee replacements have been designed to produce less wear under standard [1] and adverse [5] implant conditions.

Whereas the wear reduction effect of ceramics is generally accepted for hip implants, the corresponding effect for knee implants is not proven. Ezzet et al. reported a wear reduction of 42% for standard wear conditions [2] and of 55% for adverse wear conditions [3] when compared to a geometrically identical CoCr femoral component. In contrast to these findings, an analysis of the EndoLab® database has indicated wear rates of ceramic knee implants that are comparable to traditional low wear material couplings (Figure 1), and are within the range of clinically established devices.

The purpose of this study was to directly compare two TKR designs, one fixed bearing and one mobile bearing, each made of traditional CoCr to one made of alumina matrix composite (BIOLOX®delta, CeramTec, Germany) ceramic material. The BPK-S Rotating Platform System (Peter-Brehm, Germany; Figure 2) and the MULTIGEN PLUS fixed bearing (Lima, Italy) were knee simulator wear tested according to ISO 14243-1 (2002). A total of three specimens plus one loaded soak control for each group (four groups in total) was subjected to 5 million standard gait cycles. The anterior-posterior (AP) and internal-external rotational (IE) motion of the implants resulting from the external load application of this force controlled test was recorded continuously. Wear was determined gravimetrically. The surface appearance of contact areas was analyzed by light microscopy and particle analysis was performed according to ISO 18129. For the mobile bearing groups, a mean wear rate of 2.47 mg per million cycles (StdDev. 0.38) was determined for the CoCr implant and of 1.10 mg per million cycles (StdDev. 0.46) for the BIOLOX®deltaimplant (Figure 3). The total AP and IE motion of the two groups did not differ. However, motion during stance phase was considerably higher for the ceramic group, indicating reduced frictional resistance (data not shown).

For the fixed bearing groups, a mean wear rate of 12.01 mg per million cycles (StdDev. 3.28) was determined for the CoCr implant and of 1.78 mg per million cycles (StdDev. 0.40) for the BIOLOX®delta implant.

Based upon the EndoLab® experience the ceramic total knee replacements tested perform as good as the best performing metallic total knee replacements. However it can be concluded that for the two implant systems tested the wear rate is reduced by more than 50% by using ceramic on polyethylene articulation when compared to an identical cobald crome design.


*Email: