header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

DETERMINATION OF BONE COORDINATES AND KINEMATIC ASSESSMENT OF KNEE USING SKELETAL MARKERS IN A CADAVER STUDY

Computer Assisted Orthopaedic Surgery (CAOS) 13th Annual Meeting of CAOS International



Abstract

To develop a useful surgical navigation system, accurate determination of bone coordinates and thorough understanding of the knee kinematics are important. In this study, we have verified our algorithm for determination of bone coordinates in a cadaver study using skeletal markers, and at the same time, we also attempted to obtain a better understanding of the knee kinematics.

The research was performed at the Medical Simulation Center of Tzu Chi University. Optical measurement system (Polaris® Vicra®, Northern Digital Inc.) was used, and reflective skeletal markers were placed over the iliac crest, femur shaft, and tibia shaft of the same limb. Two methods were used to determine the hip center; one is by circumduction of the femur, assuming it pivoted at the hip center. The other method was to partially expose the head of femur through anterior hip arthrotomy, and to calculate the centre of head from the surface coordinates obtained with a probe. The coordinate system of femur was established by direct probing the bony landmarks of distal femur through arthrotomy of knee joint, including the medial and lateral epicondyle, and the Whiteside line. The tibial axis was determined by the centre of tibia plateau localised via direct probing, and the centre of ankle joint calculated by the midpoint between bilateral malleoli. Repeated passive flexion and extension of knee joint was performed, and the mechanical axis as well as the rotation axis were calculated during knee motion.

A very small amount of motion was detected from the iliac crest, and all the data were adjusted at first. There was a discrepancy of about 16.7mm between the two methods in finding the hip centre, and the position found by the first method was located more proximally. When comparing the epicondylar axis to the rotation axis of the tibia around knee joint, there was a difference of 2.46 degrees. The total range of motion for the knee joint measured in this study was 0∼144 degrees. The mechanical axis was found changing in an exponential pattern from 0 degrees to undetermined at 90 degrees of flexion, and then returned to zero again. Taking the value of 5 degrees as an acceptable range of error, the calculated mechanical axis exceeded this value when knee flexion angle was between 60∼120 degrees.

The discrepancy between the hip centres calculated from the two methods suggested that the pivoting point of the femur head during hip motion might not be at the center of femur head, and the former location seemed closer to the surface of head at the weight bearing site. Under such circumstances, the mechanical axis obtained through circumduction of the thigh might be 1∼2 degrees different from that obtained through the actual center of femur head. During knee flexion, the mechanical axis also changed gradually, and this could be due to laxity of knee joint, or due to intrinsic valgus/varus alignment. However, the value became unreliable when the knee was at a flexion angle of 60∼120 degrees, and this should be taken into account during navigation surgery.


E-mail: