header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

COMPUTER-ASSISTED INTRAOPERATIVE MEASUREMENT OF LEG-LENGTH IN TOTAL HIP ARTHROPLASTY: AN ACCURATE AND SIMPLE METHOD

Computer Assisted Orthopaedic Surgery (CAOS) 13th Annual Meeting of CAOS International



Abstract

Introduction

Correct postoperative leg length restoration is among the most important goals of hip arthroplasty. Therefore, we developed, validated and clinically applied a novel software algorithm based on surgical navigation, which allows the surgeon to restore a defined femur position without establishing a femoral coordinate system or the hip joint center and measure the leg length accurately and simply.

Material and Methods

This new leg length algorithm was used in 154 hips (145 patients) that underwent CT-based computer-assisted THA (VectorVision Build 274 prototype; BrainLAB AG, Helmstetten, Germany) with a tissue preserving superior capsulotomy. Intraoperatively, a pelvic and a femoral dynamic reference bases (DRB) were applied and the anterior pelvic plane (APP) was set as the pelvic coordinate system. Then, the hip joint was put in a neutral position and this position, and the relative position of the femoral DRB relative to the pelvic DRB, was captured and stored by the navigation system. After implantation of the prosthesis the same above described femoral position with the same amplitude of flexion/extension, abduction/adduction and rotation was restored. Now, any resulting difference was due to linear changes. Validation of this new algorithm was performed by comparing the navigated results to measurements from calibrated antero-posterior pre- and postoperative radiographs. The radiographic results were compared to the mean leg length change measured with the navigation system.

Results

No significant difference was found between radiographic leg length change and the results from the navigation system (p=0.658). The mean difference between the radiographic results and the results from the navigation system was −0.5 (1–8 mm (range, −5–4 mm). The mean registration accuracy of the navigation system was 2.04 (0.58 mm (range, 0.70–3.00 mm).

Discussion

This novel tool has the potential to increase the accuracy and consistency of leg-length change measurement during hip arthroplasty. Improved methods of measuring leg length change during surgery are even more critical now, when smaller incisions are being used, because traditional mechanical measurement methods are potentially even more unreliable than they are when larger exposures are used. This current method of measuring leg length change eliminates the need to calculate the center of rotation of the arthritic hip joint, which is often not accurately possible, and eliminates the need to establish a femoral coordinate system, which can be time consuming and frustrating. Besides registration accuracy, validation with plain radiographs is another potential source of error. Nonetheless, there was a substantial agreement between the radiographic results and the results from the navigation system. This novel computer-assisted method represents an accurate and simple tool for intraoperative leg length measurement.


Email: