header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

SPECIAL INSTRUMENT OR COMPUTER NAVIGATION FOR KNEE REPLACEMENT SURGERY: WHENEVER OR WHEN?

Computer Assisted Orthopaedic Surgery (CAOS) 13th Annual Meeting of CAOS International



Abstract

Introduction

Stryker computer navigation system has been used for total knee arthroplasty (TKA) procedures since October 2008 at the Russian Ilizarov Scientific Centre for Restorative Traumatology and Orthopaedics.

Material and methods

There have been 126 computer assisted TKA that accounted for 11.5 % of primary TKA within this period (1096 procedures). Arthritis of the knee joints with evident pain syndrome was an indication to TKA surgery. Arthritis of the knee joint of 27 patients (21.4 %) was accompanied by femoral deformity of various etiology with debris found in the medullary canal in several cases. The rest 99 patients (78.6 %) were regular cases of primary TKA.

Results

We compared the results of correction of lower limb biomechanical axis with TKA employing navigation and without computer assistance. Regular TKA procedures showed no substantial difference in the correction of biomechanical axis. Complete correction using computer navigation was achieved in 85 % of the cases versus 79 % of the patients without navigation. The deformity up to 3° developed in 14 % of navigated cases and in 17 % of the cases without computer assistance.

An error of deformity correction was 3–5° in 4 % of the cases without computer navigation. Those were cases of challenging primary TKA. So the advantages of computer navigation have become evident with greater deformities, and in the cases when intramedullary guide can hardly be used due to severe deformities in the femoral metaphysis and diaphysis, after several operative procedures of osteosynthesis with deformed, obliterating bone marrow canal or presence of debris. Complete correction using computer navigation was achieved in 85.2 % cases versus 42.8 % patients without navigation. Postoperative varus of 2° was observed in 14.8 % cases (valgus or varus deformity of 3° developed in 28.6 % of the cases without computer assistance).

Conclusion

What is better: special instrumentation or navigation?

Current instrumentation can provide regular mechanical control of the limb axis and is based on the principles of intramedullary, extramedullary and even double guide placement. Image-free navigation and standard surgical techniques can equally be used for simple cases of primary TKA. Same landmarks are used. These landmarks are determined by a surgeon quite subjectively and can lead to inadequate usage of special instrumentation and computer navigation.

However, computer navigation should be used in the cases when intramedullary guide can hardly be used, not desirable or possible. Special instrumentation can fail in setting a valgus angle needed with extraarticular femoral deformity. Navigation allows determining rotation more precisely in the cases when posterior femoral condyles contour (posttraumatic condition, hypoplastic condyles) is distorted.

Assessment of ligament balance can be rather subjective when special instrumentation is used. Application of computer navigation is helpful for measurements of flexion and extension gaps sixe and regularity.

Computer navigation is contraindicated for contractures and ankyloses of the hip joint. For the rest of the cases the choice of instrumentation is a surgeon's decision.


Email: