header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Osteoblast-Like Cell Proliferation and Gene Expression on Bioactive PEEK

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

The bioactive polyetheretherketone (PEEK) was fabricated by the combination of PEEK and CaO-SiO2 particles, which formed hydroxyapatite on its surfaces in simulated body fluid and showed good mechanical propeties. The study revealed osteoblast-like cell proliferation and gene expression on the bioactive PEEK.

Materials and Methods

Peek and bioactive PEEK discs (24 mm in diameter and 2 mm in thickness) were prepared. Bioactive PEEk was produced by the combination of 80 vol% Peek powder and 20 vol% CaO-SiO2 particles (30CaO · 70SiO2). Discs were sterilized with ethylene oxide gas. The study was approved by the ethics committee in Chiba University. Human osteoblast-like cells were used in the study. The cells at passage 3–5 were used in the experiments. 2 × 105cells /disc were culture at 37°C in a humidified atmosphere with 5% CO2, and the media was replaced every 3 days. At days 3, 7, 21, the culture media, cells and discs were collected respectively. Cell attachment assay was performed. Cells were seeded at a density of 4 × 105 cells /well and incubated for 2 hours at 37 C in a humidified atmosphere with 5% CO2. The cells on the discs were evaluated by DNA content. The real-time PCR was performed with regard to type I collagen (COLI), osteocalcin (OC), osteonectin (ON), osteopontin (OPN), and GAPDH. The alkaline phosphatase activity (ALP) was measeured at 3, 7, and 21 days, which samples as used in the DNA-content assay. Alizalin Red Staining was performed at day 21 to quantify calcification deposits in discs. Results were analyzed using Student's t-test with at least three samples. The level of siginificance was set at p=0.05.

Results

The content of DNA showed similar increases on PEEK and bioactive PEEK in the course of day 3, 7, 21. The cell attachment of bioactive PEEK was two times larger than that of PEEK. Real-time PCR results of human osteoblast-like cells cultured on PEEK and bioactive PEEK discs were shown in Fig. 1. There were no significant differences between cells on PEEK and bioactive PEEK with respect to COL I and ON mRNA expression. However, human osteoblast-like cells on bioactive PEEK presented higher expression of OPN and OCN mRNA at day 21. No significant differences were found in ALP activity of both discs. Calcification deposits were observed only on bioactive PEEK at day 21

Discussion

The bioactive PEEK, with the combination of 80 vol% Peek powder and 20 vol% CaO-SiO2 particles (30CaO · 70SiO2) showed 123.5 MPa and 6.43 GPa in bending strength and Young's modulus, respectively. The bioactive PEEK has the aggregated CaO-SiO2 oarticles between the PEEK particles on its surface, which causes hydroxyapatite formation in vivo. The mechanism is considered to enhance the osteoblast attachment ability, and induce OPN and OC mRNA expression, following the calcification of human osteobloast-like cells. Therefore, the study indicated that bioactive PEEK is the most promising for use as an orthopedic implant.