header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Titanium Under Fatigue Loading: What Is the Influence of a Corrosive Medium?

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Background

Titanium, in particular Ti6Al4V, is the standard material used in cementless joint arthroplasty. Implants are subjected to cyclic loading where fracture is the reason for re-operation in 1.5–2.4% of all revisions in total hip arthroplasty. In order to strengthen critical regions, surface treatments such as shot peening may be applied.

A superficial titanium oxide layer is naturally formed on the surface as a protective film at ambient conditions. However, as its thickness is only in the range of several nanometers, it is prone to be destroyed by high loads - as present at the surface during bending - leading to an ‘oxidative wear’ in a corrosive environment [1]. The present study aims to evaluate the shot peening treatment on Ti6Al4V regarding its potential for cyclically loaded parts under a dry and a corrosive testing medium.

Materials and Methods

Hour-glass shaped titanium specimens (Ti6Al4V) with a minimal diameter of 10 mm have been subjected to an annealing treatment at 620°C for 10h to remove initial residual stresses introduced during machining. Subsequently, a high-intensity shot peening treatment with cut wire followed by a low-intensity cleaning process with glass beads have been performed (Metal Improvement, Germany). Arithmetic mean roughness Ra of the treated surfaces was measured (Mahr Perthometer M2, Germany). Residual stress depth profiles prior to and after shot peening have been measured by a Fe-filtered Co-K(alpha) radiation (GE Measurement&Control, USA) and calculated using the sin2(psi) method. Fatigue strength has been determined by two servo-hydraulic hydropulsers (Bosch Rexroth, Germany) at 10 Hz and a load ratio of R=0.1 either under dry conditions (8 specimens) or surrounded by a 0.9-% saline solution (6 specimens) (BBraun, Germany) (Fig. 1). Testing has been performed until fracture occurred or the total number of 10 × 106 cycles has been reached. All fracture surfaces have been analyzed after testing using FEG-SEM (Zeiss LEO 1530 VP Gemini, Germany).

Results

Surface roughness increased significantly (p<0.01) after shot peening treatment from Ra, annealed = 0.24 μm (±0.09 μm) to Ra, peened = 2.02 μm (±0.16μm). Residual stresses have been introduced during shot peening up to a depth of 200μm with a maximum of 870 MPa at the surface (Fig. 2, left). All specimens showed clear signs of fatigue fracture after failure. Regarding fatigue strength, no differences have been observed between testing in saline solution or a dry environment (Fig. 2, right).

Discussion

Shot peening has shown to significantly increase fatigue strength of a Ti6Al4V alloy after testing up to 10 × 106 cycles. Thus, it seems to be an appropriate treatment for highly loaded components in cementless joint arthroplasty. In this context, a corrosive environment around a cyclically loaded implant does not seem to have any influence on their long term mechanical behaviour. However, it still needs to be clarified to which extend shot peening might decrease the risk of an early implant failure due to micro-motion between assembled parts (fretting) [2].