header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Leg Length Discrepancy Measured With Radiographs Using a 2D Template and Computed Tomography

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Objective

In total hip arthroplasty (THA), the femoral component influences leg length inequality and gait, and is associated with poor muscle strength and other unsatisfactory long-term results. We have therefore used intraoperative radiographs to acquire accurate measurements of femoral component size and position. At the last meeting of this society, we reported that accurate positioning was successfully achieved in 68 cases (87.2%) as a consequence of taking intraoperative radiographs. However, we have little understanding as regards to the accuracy of X-ray measurements. We accordingly undertook an examination of the accuracy of such measurements. The purpose of this study was to evaluate the difference between leg length discrepancy (LLD) measured using X-ray and computed tomography (CT).

Materials and Methods

The study group comprised 48 primary THAs performed between October 2010 and April 2012. Using 2D template software (JMM Corporation), we measured LLD using pre-operative anteroposterior (AP) radiographs of the pelvis. On the basis of both teardrop lines, we measured LLD of the lesser trochanter top (Fig. 1), lesser trochanter direct top (Fig. 2), and trochanteric top (Fig. 3). Furthermore, using Aquarius NET software, we measured LLD using AP and lateral scout views of the pelvis and bilateral femurs. This data was defined as the true LLD. The difference between the X-ray data (lesser trochanter top, lesser trochanter direct top, and trochanteric top) and the CT data was defined as accuracy. Additionally, we measured the size of the lesser trochanter and examined the association.

Results

The mean LLD was 11.4, 12.1, and 9.6 mm on the lesser trochanter top, the lesser trochanter direct top, and the trochanteric top of radiographs, respectively, and 11.6 mm on CT scans. Precision was within 5 mm of the true LLD in 42 cases (87.5%) for the lesser trochanter top, 36 cases (75.0 %) for the lesser trochanter direct top, and 27 cases (63.0%) for the trochanteric top. We observed no association between the size of the lesser trochanter and the measurement accuracy.

Conclusions

When using X-ray measurements, the lesser trochanter top is the most useful site for LLD measurement.