header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Generation of Physiological Movement and Loading Parameter Sets for Preclinincal Testing of Total Hip Replacements With Regard to Frequent Daily Life Activities

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

At present, wear investigations of total hip replacement (THR) are performed in accordance with the ISO standard 14242, which is based on empirically determined relative motion data and exclusively describes the gait cycle. However, besides continuous walking, a number of additional activities characterize the movement sequences in everyday life and influence the wear rates as well as the size and shape of wear debris. Disagreements of in vitro and in vivo wear mechanisms seemed to be a result of differences between in vitro and in vivo kinematics and dynamics. This requires an optimization of the current test procedures and parameters. Hence, the aim of the present study was to evaluate most frequent activities of daily living, based on available in vivo data, in order to generate parameter sets according to loading and rotational movements close to the physiological situation.

For the generation of angular patterns, time-dependent three-dimensional trajectories of reference points were used from the HIP98 database of Bergmann. The data set was evaluated and interpolated using analytical techniques to simulate consecutive smooth motion cycles in hip wear simulators or further test devices. The calculated relative joint movement was expressed by an ordered set of three elementary rotations and was complemented with three force components of the joint contact force to generate kinematically and dynamically consistent parameter sets. The obtained sets included the activities walking, knee bending, stair climbing and a combined load case of sitting down and standing up for an averaged patient.

Generated slide tracks, created by the use of the angular patterns, demonstrated differences according to the kinematics between selected daily life activities and those established for the ISO standard 14242. In particular, for the relative flexion-extension rotational movement, routine activities showed significant higher ranges of motion. Additionally, the depicted force pattern underlined that the prevailing force component varied considerably between different activities.

These deviations in range of motion and joint forces could be attributed to disagreements between in vitro and in vivo results of THR wear testing. The Integration of frequent activities of daily living in the in vivo test protocol could be realized by means of the sequential arrangement of the four investigated activities.