header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Robotic in Vivo Fluoroscopic Arthoplasty Evaulations With Normal Patient Movements

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

A Tracking Fluoroscope System (TFS), the first of its kind, has been developed and the design of this new technology has been previously presented. The TFS is a unique mobile robot that can acquire real-time x-ray records of hip, knee, or ankle joint motion while a subject walks/maneuvers naturally within a laboratory floor area. By virtue of its mechanizations, test protocols can involve many types maneuvers such as chair rises, stair climbing/descending, ramp crossing, walking, etc. Because the subjects are performing such actions naturally, the resulting fluoroscope images reflect the full functionality of their musculoskeletal anatomy. The goal of this follow-up study is to conduct a comparative analysis with traditional stationary fluoroscopy units to determine if this new technology does offer clinical and research advantages.

Technical trials with human subjects and active fluoroscope operation were designed to evaluate and refine the TFS engineering and operational features. These trials have been completed and the key results were compared with the traditional stationary fluoroscopic units. The technical trials verified that the TFS is ready for actual clinical diagnostic use and provides the researcher an opportunity to evaluate in vivo kinematics of subjects while performing normal daily activities at various speeds. Using the mobile fluoroscopic unit, patients performed activities that were not possible to capture with a stationary unit. Also, with the upgrade to an image recording rate of 60 frames per second, the quality of the fluoroscopic images using the TFS were superior to stationary units.

Further analyses are now being conducted to compare the kinematic results for a deep knee bend and gait, traditionally analyzed in the past using stationary fluoroscopic units to determine if there are unique advantages. It is hypothesized that the more normal-like gait patterns may produce kinematic patterns that differ from stationary fluoroscopic units. At present, the TFS has proven to be superior over other fluoroscopic units and will allow clinicians to evaluate patients under and unrestricted kinematic environment. Also, future research studies will be able to compare patients with or without a TKA under more challenging kinematic conditions, producing kinematic patterns that may lead to incites pertaining to TKA failure and/or concerns.