header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Profiling Tapers for Retrieval Analysis of Metal on Metal Modular Heads

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

The poor outcome of large head metal on metal total hip replacements (LHMOMTHR) in the absence of abnormal wear at the articulating surfaces has focussed attention on the trunnion / taper interface. The RedLux ultra-precision 3D form profiler provides a novel indirect optical method to detect small changes in the form and surface finish of the head taper as well as a quantitative assessment of wear volume. This study aimed to assess and compare qualitatively the tapers from well functioning small diameter, with poorly functioning LHMOMTHR's using the above technique.

Method

3 groups of retrieval tapers were analysed (Group 1: 28 mm CoCr heads from well functioning MOMTHRs (n=5); Group 2: Large diameter CoCr heads from LHMOMTHRs revised for failure secondary to adverse reaction to metal debris (n=5); Gp 3 (control): 28 mm heads from well functioning metal on Polyethylene (MOP) THRs; n=3). Clinical data on the retrievals was collated. The Redlux profiling of modular head tapers involves a non direct method whereby an imprint of the inside surface of a modular head is taken, and this is subsequently scanned by an optical non contact sensor using dedicated equipment [1]. The wear was also measured on the bearing surface [1]. RedLux profiling of the tapers produced a taper angle and 3D surface maps. The taper angles obtained with the Redlux method were compared to those obtained using CMM measurement on 3 parts. The Redlux profiling, including imprints, was also repeated 3 times to gauge potential errors.

Results

There was no difference in mean 12/14 taper angles between groups. There was no difference in volumetric and linear wear at the bearing surface between groups. Only the LHMOMs showed transfer of pattern from the stem to the internal head taper, with clear demarcation of the contact and damaged area between head taper and stem trunnion (see figure 1 – interpretation of head taper surface features demonstrated using Redlux optical imaging). 3D surface mapping demonstrated wear patterns compatible with motion or deformations between taper and trunnion in the LHMOM group. These appearances were not seen in tapers from small diameter MOM and MOP THRs (see Figure 2).

Discussion

Differences in appearance of the taper surface between poorly functioning LHMOMTHRs and well functioning MOP or MOM small diameter devices highlight an area of concern and potential contributor to the mode of early failure. Further work is required to fully qualify the Redlux method capabilities, and to understand the origin of the damage seen on those tapers, and the possible partial contribution of damage caused during retrieval.