header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Kinematics of Bicompartmental Knee Arthroplasty During Weight-Bearing Activities

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

There is great contemporary interest to provide treatments for knees with medial or medial plus patellofemoral arthritis that allow retention of the cruciate ligaments and the natural lateral compartment. Options for bicompartmental arthroplasty include custom implants, discrete compartmental implants and monoblock off-the-shelf implants. Each approach has potential benefits. The monoblock approach has the potential to provide a cost-efficient off-the-shelf solution with relatively simple surgical instrumentation and procedure. The purpose of this study was to determine if monoblock bicompartmental knee arthroplasty shows evidence of retained cruciate ligament function and clinical performance more similar to unicompartmental arthroplasty than total knee arthroplasty.

Nine females and one male patient were enrolled in this IRB approved study. Each subject received unilateral bicompartmental knee arthroplasty an average of 2.6 years (2.0 to 3.6 years) prior to this study. Subjects averaged 65 years (58–72 years) and 28 BMI (25–31) at the time of surgery. Mean outcome scores at the time of study were 97/95 for the Knee Society knee/function score, 16.4 Oxford score, 6.5 UCLA Activity score and 137 degrees range of motion. Subjects were observed using dynamic fluoroscopy during lunge, kneeling and step-up/down activities. Subjects also received CT scans of the knee in order to create bone/implant composite shape models. Model-image registration techniques were used to determine 3D knee kinematics (Figure 1). Knee angles were quantified using a flexion-abduction-rotation Cardan sequence and condylar translations were determined from the lowest point on the condyle with respect to the transverse plane of the tibial segment.

Maximum knee flexion during lunge and kneeling activities averaged 112°±8° and 125°±7°, respectively. Tibial internal rotation averaged 10°±6° and 12°±10° for the lunge and kneeling activities. For both deeply flexed postures, the medial condyle was 1 mm anterior to the AP center of the tibia while the lateral condyle was 11 mm and 13 mm posterior to the tibial center. For the step-up/down activity, tibial internal rotation increased an average of 2° from 5° to 75° flexion, but was quite variable (Figure 2). Medial condylar translations averaged 4 mm posterior from 5° to 25° flexion, followed by 6 mm anterior translation from 25° to 80° flexion (Figure 3). All knees showed posterior condylar translation from extension to early flexion.

An important potential benefit to any bicompartmental arthroplasty treatments is retention of the cruciate ligaments and maintenance of more natural knee function. The knees in this study showed excellent or good clinical outcomes and functional scores, and relatively activity high levels. There was no evidence of so-called paradoxical anterior femoral translation during early flexion, indicating retained integrity of the natural AP stabilizing structures. Weight-bearing deep flexion during lunge and kneeling activities was comparable to previously reported unicompartmental and well-performing total knee arthroplasty subjects. Kinematics were quite variable between subjects.

Monoblock bicompartmental arthroplasty appears to permit functional retention of the cruciate ligaments, consistent with functionally stable knees. Further efforts should focus on the specific surgical placement of off-the-shelf bicompartmental implants to optimize knee function and provide consistent knee mechanics.