header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Discovery Elbow System: Outcome of Total Elbow Replacement

International Society for Technology in Arthroplasty (ISTA) 2012 Annual Congress



Abstract

Background

The quest for the perfectly designed elbow prosthesis continues as instability and loosening remain the foremost reasons for the failure of total elbow replacement (TER). The Discovery® Elbow System (Biomet, UK) (Figure 1), which has been used in UK since 2003, is one of the latest generations of linked prosthesis. This system was designed to decrease polyethylene-bushing wear, improve anatomic stem design, restore elbow joint biomechanics, and produce a hinge that could be easily revised. This report describes the short term outcome of TER using the Discovery® Elbow System.

Patients and Methods

A total of 60 TERs including 48 primary and 12 revisions were performed between 2003 and 2008. Patients included 21 males (37%) and 36 females (63%) with a mean age of 63 years. The indications for primary TER were advanced rheumatoid arthritis (n=19), osteoarthritis (n=16), post traumatic osteoarthritis (n=9), acute fractures (n=3), and haemophilic arthropathy (n=1). The outcome was assessed using pain score, Liverpool Elbow Score (LES), and range of movement during a mean follow-up of 26 months. Associated complications were documented. Radiological assessment included evaluation for loosening, instability and periprosthetic fractures.

Results

The mean LES was significantly (p<0.001) improved from 3.8 (±1) pre-operatively to 6.9 (±2) at the final follow- up. Significant improvements were noted in elbow flexion from 100° (±22) to 120° (±15), supination from 41° (±28) to 65° (±20) and pronation from 52° (±22) to 72° (±18). There was no significant change in elbow extension. Mean improvement in flexion-extension and pronation-supination arc was 22° and 44°, respectively. 46 cases (77%) were completely pain-free at the final follow-up. The main complications included deep infection (4 cases – treated with staged revision TER), postoperative ulnar neuropathy (3 cases–treated with decompression), intra-operative fractures of medial condyle (3 cases – treated non-operatively with brace), and elbow haemarthrosis (1 case).

Discussion

TER with Discovery® Elbow System resulted in either no pain or mild pain in 87% of cases. Patients undergoing Acclaim, Souter-Strathclyde, GSB III, and Coonrad-Morrey TER have been reported to have no/mild pain in 64%, 67%, 50–92% and 60–100% of cases, respectively. A 22° improvement in flexion-extension arc is comparable to that of Acclaim (23°), Souter-Strathclyde (15°), GSB III (19–33°), and Coonrad-Morrey (17–26°) TER. An improvement of 44° in pronation-supination arc in our series is also comparable to that of 31–67° reported for GSB III and higher than the Coonrad-Morrey prosthesis (21–28°).

In terms of complications, an infection rate of 6.7% is consistent with those reported for GSB III TER (7–11%) and Coonrad-Morrey (6–8%). The incidence of persistent ulnar neuropathy was lower compared to GSB III TER (11–14%), Coonrad-Morrey (12–26%), and Acclaim (8%). While the survival of Discovery TER was 93%, the survival of GSB III (5–6 years) and Coonrad-Morrey (5 years) has been reported as 71–85% and 72–90%. The results indicate that Discovery® Elbow System is an effective device for total elbow arthroplasty in terms of functional improvement, pain relief and range of motion at short-term follow-up.