header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE USE OF DEMINERALISED CORTICAL BONE FOR TENDON AND LIGAMENT REPAIR

British Orthopaedic Research Society (BORS) Annual Conference



Abstract

Treatment of tendon and ligament injuries remains challenging; the aim is to find a biocompatible substance with mechanical and structural properties that replicate those of normal tendon and ligament. We examined the mechanical properties of Demineralised Cortical Bone (DCB) after gamma irradiation (GI) and freeze drying (FD). We also used different techniques for repairing bone-tendon-bone with DCB in order to measure the mechanical performance of the construct. DCB specimens were allocated into 4 groups; FD, GI, combination of both or none. The maximum tensile forces and stresses were measured. 4 cadaveric models of repair of 1cm patellar tendon defect using DCB were designed; model-1 using one bone anchor, Model-2 using 2 bone anchors, Model-3 off-loading by continuous thread looped twice through bony tunnels, Model-4 off-loading with 3 hand braided threads. Force to failure and mode were recorded for each sample. FD groups results were statistically higher (p=<0.05) compared to non-FD groups, while there was no statistical difference between GI and non-GI groups. The median failure force for model-1: 250N, model-2: 290N, model-3: 767N and model-4: 934N. There was no statistical significance between model-1 and model-2 (p=0.249), however statistical significance was found between other models (p=<0.006). GI has no significant effect on mechanical strength of the CDB while FD may have positive effect on its mechanical strength. Our study shows that a tendon rupture can be successfully augmented with CDB giving initial appropriate mechanical strength suitable for in vivo use providing the biological reactions to the graft are favourable.