header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

Validating a global rating scale to monitor the learning curves of orthopaedic trainees during complex arthroscopic tasks

British Orthopaedic Association 2012 Annual Congress



Abstract

Introduction

Motion analysis is a validated method of assessing technical dexterity within surgical skills centers. A more accessible and cost-effective method of skills assessment is to use a global rating scale (GRS). We aimed to perform a validation experiment to compare an arthroscopic GRS against motion analysis for monitoring orthopaedic trainees learning simulated arthroscopic meniscal repairs.

Methods

An arthroscopic meniscal repair task on a knee simulator was set up in a bioskills laboratory. Nineteen orthopaedic trainees with no experience of meniscal repair were recruited and their performance assessed whilst undertaking a standardized meniscal repair on 12 occasions. An arthroscopic GRS, assessing parameters such as “depth perception,” “bimanual dexterity,” “instrument handling,” and “final product analysis” was used to evaluate technical skill. Performance was assessed blindly by watching video recordings of the arthroscopic tasks. Dexterity analysis was performed using a motion analysis tracking system which measured “time taken,” “total path length of the subject's hands,” and “number of hand movements”.

Results

Motion analysis objectively defined the learning curves and demonstrated significant improvement in performance over the 12 tasks (p< 0.0001). The GRS demonstrated the same learning curve with a significant improvement in performance (p< 0.0001). Importantly, for each individual subject, there was significant improvement in performance as assessed by GRS over the 12 tasks (p< 0.0001). There was a moderate correlation (p< 0.0001) between GRS and all the motion analysis parameters (r values: time=−0.58, path length=−0.58, hand movements=−0.51).

Conclusion

Established arthroscopic GRSs have not previously been used to monitor learning curves during complex arthroscopic tasks. The results demonstrate that both the GRS and motion analysis are able to detect performance improvement during such tasks. This further validates the arthroscopic GRS for use in monitoring individual trainees and has the advantage over motion analysis of being directly transferrable to the operating room.