header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

“GROWING IMPLANTS” IN THE TREATMENT OF EARLY ONSET SCOLIOSIS – PRELIMINARY REPORT.

European Federation of National Associations of Orthopaedics and Traumatology (EFORT) - 12th Congress



Abstract

Introduction

The aim of the treatment of children with early onset scoliosis is controlling growth of the spine. Whatever the etiology, early progressive deformations require multiple stages of surgery usually performed every 6–12 months. One have to be reckoned with complications requiring additional surgical intervention.

Objective

The aim of the study is to present a new method of surgical treatment of early onset scoliosis involving the implantation of specially constructed implants to allow three dimensional correction of spinal deformity with a preserved capacity to continue the growth of spine without distraction staged operations followed by final spondylodesis in mature spine.

Material

The clinical material consists of homogeneous group of patients: 8 girls and a one boy aged 6 to 14 years (mean age = 9 years). The estimated group four children had a single-curve, four children had a double-curve, while one child was affected by congenital kyphosis. The follow up ranged from 2 to 17 months (mean = 13.5 months)

Method

Efficacy of spinal deformity correction using a “growing implants” was estimated by Cobb andgle measurement of the curvature 1/before the operation, 2/after surgery and 3/follow up.

Results

During surgery, all patients obtained a large correction of curvature ranging from 50% to 100% (on average −70%). The degree of correction was directly dependent on the size of the initial deformation of 62 to 120 ° (average 77 °). During the entire period of observation in four children we have not identified the loss of correction or fits within the limits of measurement error. In one child thirty degree-loss correction stemmed from too selective implantation of the implants. During additional surgery the stabilization was extended to the extra two motor segments witch resulting in full correction. In one patient, due to rapid growth, rods were needed to be replaced for longer, because of the risk of pulling out from the lower screws. In one case we observed further correction during follow up.

Conclusions

Using the method we obtained a very good correction in the first stage of treatment. Maintenance of correction does not require any intermediate staged operating procedures. Patients do not require corrective brace. Using “growing implants” in the early onset scoliosis one avoid complications peculiar to current growth-sparing procedures. These patients would have had 15 lengthening procedures after their initial correction if treated by conventional growing rod methods.