header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

FRICTION IN METAL-ON-POLYETHYLENE LUMBAR TOTAL DISC REPLACEMENTS

British Orthopaedic Research Society (BORS)



Abstract

Spinal total disc replacement (TDR) designs rely heavily on total hip replacement (THR) technology and it is therefore prudent to check that typical TDR devices have acceptable friction and torque behaviour. For spherical devices friction factor (f) is used in place of friction coefficient (mju). The range of loading for the lumbar spinal discs is estimated at perhaps 3 times body weight (BW) for normal activity rising to up to 6 times BW for strenuous activity[1]. For walking this equates to around 2000 N, which is the maximum load required by the ISO standard for TDR wear testing[2].

Three Prodisc-L TDR devices (Synthes Spine) were tested in a single station friction simulator. Bovine serum diluted to 25% was used as a lubricating medium. Flexion-extension was ±5 deg for all experiments with constant axial loading of 500, 2000 and 3000 N. The cycle run length was limited to 100 and the f and torque (T) values recorded around the maximum velocity of the cycle point and averaged over multiple cycles.

Preliminary results shows that the 500 N loading produced the largest f of 0.05 ± 0.004. The 2000 N load, which approximates daily activity, gave f = 0.036 ± 0.05 and the 3000 N load gave f = 0.013 ± 0.003. The trend was for lower f with increasing loads.

A lumbar TDR friction factor of 0.036 for a 2000N load and the reduction in f for increasing loads is comparable to the lower end of the range of values reported for THR in similar simulator studies using metal-on-polyethylene bearing materials[3]. The 3000 N result showing that increasing the load above that expected in daily activity does not raise the f could be important when considering rotational stability and anchorage in a TDR device because frictional torque at the bearing surfaces is proportional to the product of load, device radius and f.