header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

THE ROLE OF THE CALCAR FEMORALE IN HIP FRACTURE TYPE- A PILOT STUDY USING RAPID CT

British Orthopaedic Research Society (BORS)



Abstract

The calcar femorale or ‘true neck’ of the femur has a role in transmitting load from the cantilevered neck to the femoral shaft (Zhang 2009). It can appear as a distinct condensation in clinical CT images because its structure is very similar to compact bone (Aspden 1998). Harty (1957) proposed that the calcar acts as a ‘spike’ in certain fall situations, contributing to splitting of the trochanter. We hypothesised that among elderly fallers, the size of the calcar would influence whether fractures occurred in the trochanteric (TR) or femoral neck (FN) site. We also asked whether patients who sustained a fracture had more or less calcar bone than frailty-matched controls that fell but didn't fracture.

The FEMCO study is designed to investigate male (M) and female (F) patients with acute hip fracture with multi-detector CT, before they undergo surgery. It includes an age, sex and frailty-matched control group (who have sustained at least one injurious fall without hip fracture). The fractured hip is reconstructed in 3D for classification of fracture type (FN or TR). For the present pilot study, there were 14 cases (5TR, 9FN mean 80+/−8.5yrs. 7M, 7F) and 11 controls (83+/−7.0yrs. 3M, 8F). Axial CT slices where a calcar was visible were opened in Stradwin 4.1 software (Treece 2011). The calcar femorale was semi-automatically selected with the flood fill tool. Each axial image that contained a visible calcar was included in the analysis, so that for each femur a single calcar volume was generated. Results were examined using ANOVA.

Combining male and female results, there was a non-significant trend towards a higher calcar volume in patients sustaining trochanteric rather than femoral neck fractures (0.73cm3 +/− 0.26 vs 0.61cm3 +/−0.14, p=0.27) but no difference between cases and controls. Males had a significantly higher calcar volume than females (mean 0.82cm3 +/− 0.24 vs 0.59cm3 +/− 0.13, p=0.005). Further studies are now planned in larger samples of each sex, to examine the role of the calcar in fracture mechanics. Three-dimensional visualisations provide a novel insight into the damage patterns and resultant fragment locations.