header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DIAGNOSTIC ACCURACY OF MRI AND MRA FOR TRIANGULAR FIBROCARTILAGINOUS COMPLEX INJURIES

British Orthopaedic Research Society (BORS)



Abstract

Background and Objectives

Triangular fibrocartilaginous complex (TFCC) tears are common sources of ulna sided wrist pain and resultant functional disability. Diagnosis is based on history, clinical examination and radiological evidence of a TFCC central perforation or radial/ulna tear. The purpose of this study is therefore to evaluate the diagnostic accuracy of Magnetic Resonance Imaging (MRI) and Magnetic Resonance Arthrography (MRA) in the detection of TFCC injury in the adult population.

Methods

Published and unpublished literature databases were systematically review independently by two researchers. Two-by-two tables were constructed to calculate the sensitivity and specificity of MRI or MRA investigations against arthroscopic outcomes. Pooled sensitivity and specificity values and summary Receiver Operating Characteristic curve (sROC) evaluations were performed. Methodological quality of each study was assessed using the QUADAS (Quality Assessment of Diagnostic Accuracy Studies) tool.

Results

Twenty one studies were eligible, including 910 wrists. On meta-analysis, MRA was superior to MRI in the investigation of complete TFCC tears with a pooled sensitivity of 0.75 (95% Confidence Interval (CI): 0.70, 0.79) and specificity of 0.81 (95% CI: 0.76, 0.86), compared to MRAs 0.84 (95% CI: 0.79, 0.89), and 0.95 (95% CI: 0.92, 0.98) respectively. MRA and MRI performed at greater field strengths reported greater sensitivity and specificity findings. For 3.0 Tesla (T) MRI, the meta-analysis indicated a sensitivity of 0.86 (95% CI: 0.65, 0.97), and specificity of 1.00 (0.87, 1.00). In comparison, the pooled sensitivity for the 1.5T MRI assessment was 0.70 (95% CI: 0.64, 0.75) and specificity of 0.79 (95% CI: 0.72, 0.85). This trend was repeated for MRA where 3.0T MRA exhibited a sensitivity was 1.00 (95% CI: 0.79, 1.00) and specificity of 1.00 (95% CI: 0.82, 1.00), whilst pooled analysis 1.5T MRA demonstrated a sensitivity of 0.83 (95% CI: 0.78, 0.89) and specificity of 0.95 (95% CI: 0.91, 0.98). There was insufficient data to assess the diagnostic test accuracy of partial TFCC lesions.

Conclusions

Given its acceptable diagnostic test accuracy, it is recommended that in cases where there are questions over the diagnosis and subsequent management of patients with ulna wrist pain, a MRA should be undertaken rather than MRI.