header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Spine

Case presentation: SPONTANEOUS FUSION ACROSS THE APEX OF SEVERE THORACOLUMBAR SCHEUERMANN'S KYPHOSIS: A SURGICAL CONSIDERATION

Combined British Scoliosis Society/Nordic Spinal Deformity Society (BSS/NSDS)



Abstract

Purpose of the study

Two patients with very severe thoracolumbar Scheuermann's kyphosis who developed spontaneous bony fusion across the apex of the deformity are presented and their treatment, as well as surgical outcome is discussed.

Summary of Background Data

Considerable debate exists regarding the pathogenesis, natural history and treatment of Scheuermann's kyphosis. Surgical correction is indicated in the presence of severe kyphosis which carries the risk of neurological complications, persistent back pain and significant cosmetic deformity.

Methods

We reviewed the medical notes and radiographs of 2 adolescent patients with severe thoracolumbar Scheuermann's kyphosis who developed spontaneous posterior and anteroposterior fusion across the apex of the deformity.

Results

Patient 1

A male patient aged 17 years and 11 months underwent kyphosis correction when the deformity measured 115o and only corrected to 100o on supine hyperextension radiograph against the bolster; he had a small associated scoliosis. The surgery involved a combined single-stage anterior and posterior spinal arthrodesis T4-L3 with the use of posterior pedicle hook/screw/rod instrumentation and autologous rib graft. The anterior longitudinal ligament was ossified from T10 to L1 with bridging osteophytes extending circumferentially from T11 to T12 at the apex of kyphosis and displacing the major vessels anteriorly. The intervertebral discs from T9 to T12 were very stenotic and immobile. The osteophytes were excised both on the convexity and concavity of the associated thoracolumbar scoliosis. The anterior longitudinal ligament was released and complete discectomies back to the posterior longitudinal ligament were performed from T7 to L1. During the posterior exposure, the spine was found to be spontaneously fused across the apex of the kyphosis from T9 to L1. There were no congenital vertebral anomalies. Extensive posterior apical closing wedge osteotomies were performed from T7 to T12. The fused facets and ossified ligamentum flavum were excised and the spine was mobilised at completion of the anterior and posterior osteotomies. The kyphosis was corrected using a cantilever maneuver from proximal to distal under spinal cord monitoring. Excellent correction to 58o was achieved and maintained at follow-up. Autologous rib graft was used to enhance a solid bony fusion.

Patient 2

A female patient aged 18 years and one month underwent kyphosis correction when the deformity measured 115o and only corrected to 86o on supine hyperextension radiograph against the bolster; she had a small thoracolumbar scoliosis. The surgery involved a single-stage posterior spinal arthrodesis T2-L4 with the use of posterior pedicle hook/screw/rod instrumentation and autologous iliac crest bone. The spine was spontaneously fused across the apex of kyphosis from T9 to L1. There were no congenital vertebral anomalies. Extensive posterior apical closing wedge osteotomies were performed from T6 to T12. The fused facets and ossified ligamentum flavum were excised and the spine was mobilised at completion of the osteotomies. The kyphosis was corrected using a cantilever maneuver from proximal to distal under spinal cord monitoring. Excellent correction to 60o was achieved and maintained at follow-up. Autologous iliac crest graft was used to achieve a solid bony fusion.

In both patients the preoperative MRI assessed the intraspinal structures but failed to diagnose the solid fusion across the posterior bony elements at the apex of kyphosis. A CT scan with 3D reconstruction would have illustrated the bony anatomy across the kyphosis giving valuable information to assist surgical planning. This is recommended in the presence of rigid thoracolumbar Scheuermann's kyphosis which does not correct in hyperextension, especially if the plain radiograph shows anterior bridging osteophytes.

Conclusion

Spontaneous posterior or anteroposterior fusion can occur across the apex of severe thoracolumbar Scheuermann's kyphosis; this should be taken into account when surgical correction is anticipated. The bony ankylosis may represent the natural history of an extreme deformity as an attempt of the spine to auto-stabilise. A combination of factors including a rigid deformity, which limits significantly active movement of the spine, as well as anterior vertebral body wedging with severe adjacent disc stenosis which induces bridging osteophyte formation may result in the development of spontaneous fusion across the apex of the kyphosis either posteriorly or anteroposteriorly. In the presence of an isolated posterior fusion, segmental posterior closing wedge osteotomies with complete excision of the ossified ligamentum flavum and fused facets should mobilise the thoracolumbar spine and allow for kyphosis correction. An additional anterior spinal release including complete discectomies, resection of the anterior longitudinal ligament and osteophytes is required if the bony fusion extends anteroposteriorly. Patients with Scheuermann's kyphosis should be ideally treated at an earlier stage and with a lesser degree of deformity so that this ossification process is prevented.