header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

A SIMPLE WAY TO AID ACCURATE GUIDE WIRE PLACEMENT IN DYNAMIC HIP SCREW FIXATION FOR INTERTROCHANTERIC FRACTURES OF THE FEMUR

British Orthopaedic Research Society (BORS)



Abstract

Introduction

The use of the dynamic hip screw is common practice for the fixation of intertrochanteric fractures of the femur. The success of this procedure requires accurate guide wire placement. This can prove difficult at times and can result in repeated attempts leading to longer operating time, multiple tracks and more importantly greater radiation exposure to both patient and operating staff. We hypothesised that rather than using the standard anterior-posterior projected image (Figure 1) of a proximal femur, rotating the intensifier image (Figure 2) so that the guide wire appears to pass vertically makes it easier to visualise the projected direction of the guide wire.

Methods

Fifty Specialist Registrars, thirty participating in the London hip meeting 2009, ten from Oxford and ten from Northern deanery orthopaedic rotations were involved in the study. They were presented with standard AP and rotated images of the femoral neck on paper using 135 degree template to replicate the DHS guide.

The participants were asked to mark the entry point on the intertrochanteric area of femur on the image where they would have placed the guide wire. They did this on both standard AP and rotated images aiming for the centre of the head of the femur. Fig. 1 Standard AP image Fig. 2 Rotated image

Results

Thirty-seven Specialist Registrars (74%) were able to accurately mark their entry point on rotated images on their first attempt as compared to eighteen trainees (36%) managing to place it correctly first time on the standard image. Thirteen trainees (26%) were able to mark their entry point correctly on both standard AP and rotated images with equal accuracy.

Conclusion

Coren et al. 1 argue that human vision can more easily judge horizontal and vertical lines rather than oblique lines. Thus, rather than use the standard anterior-posterior projected image of the hip, we should routinely rotate the intensifier image so that the guide wire appears to be passing in a vertical direction. By rotating the image (Figure 2) in this way it becomes significantly easier to visualise the projected direction of the guide wire and in doing so ensure its accurate final placement thereby minimising possible complications.