header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

USING NMR TO IDENTIFY BIOMARKERS OF PAIN AND PATHOLOGY IN OSTEOARTHRITIS

British Orthopaedic Research Society (BORS)



Abstract

Osteoarthritis (OA)

is the most common arthritic condition. OA causes joint pain, loss of mobility and significantly affects the quality of life for the affected individual. The major burden to patients with arthritis is pain. However, often radiological joint destruction and the extent of pain do not correlate. This causes a dilemma for clinicians in advising timing for joint replacement surgery. In arthritis, concentrations of the neurotransmitter, glutamate is increased within the synovial fluid activating both peripheral pain mechanisms and pathological processes (1). Other pathological/pain related metabolites are also released into synovial fluid, which provides a real time snap shot of the joint pathology. We have tested the hypothesis that ‘The increased levels of pain and disease-related metabolites within human synovial fluids from arthritic joints can be detected and quantified ex vivo using high resolution 1H-NMR.’

Method

OA synovial fluid samples were obtained during arthroscopy or total knee replacements from patients with varying degrees of pain and pathology (cartilage graded 0-4; n=21). Pain perception was determined using the Oxford knee score and samples sub-classified as mild, moderate and severe pain. All samples were analysed using 500 MHz 1H NMR spectroscopy. Chemical shifts were referenced to a known concentration NMR internal standard (TSP), peaks identified by reference to published synovial fluid NMR spectra (2) and peak integrals measured using the Bruker software Topspin 2.0.

Results: Using NMR we were able to detect around 26 metabolite-specific peaks in synovial fluid spectra (such as glutamate/glutamine, isoleucine, acetyl glucoproteins, beta-hydroxbutyrate, CH2 lipids, lactate, glucose). Some specific metabolites varied significantly with pain or pathological score. For example, we found significantly more glutamate/glutamine, isoleucine and beta-hydroxybutyrate (p<0.05, T test) in OA samples reporting mild to moderate levels of pain (n=14) compared to severe pain (n=7). Significantly more CH2 lipids (p<0.05, T-test) were also present in samples indicating severe pain compared to mild/moderate pain.

Discussion

Our results have indicated that the metabolic profile of synovial fluid from patients with arthritis can differ depending on degree of pain and disease state. A number of the 26 metabolites assessed showed significant differences between different levels of pain as determined by the Oxford knee score. Both glutamate and isoleucine are known regulators of nociception. Whereas beta-hydroxybutyrate and CH2 lipids levels in synovial fluid may be indicative of alterations in joint metabolism. We have shown for the first time that specific metabolic changes within arthritic synovial fluid that can be detected by NMR may be indicative of pain and pathology. This will provide important new information about the biochemical processes underlying arthritic pain and pathology as well as identify a range of new biomarkers.