header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Trauma

THE DEVELOPMENT OF A MODEL TO INVESTIGATE THE MANAGEMENT OF MILITARY COMPLEX EXTREMITY INJURY

Combined Services Orthopaedic Society (CSOS)



Abstract

Aim To develop a militarily relevant complex extremity wounding model. Study Design Controlled laboratory study with New Zealand White Rabbits. Method Phase One: Injury Development. Under general anaesthesia, the flexor carpi ulnaris of the right forelimb was exposed and high energy, short duration impact delivered via drop test rig. Anaesthesia was maintained for three hours, the animal was recovered and saline soaked gauze and supportive bandaging applied. 48 hrs later, the animal was culled and muscle harvested for histological analysis. Analgesia was administered daily, animals checked by experienced staff at least twice daily and temperatures recorded by subcutaneous transponder. Phase Two: Contamination. Sequential groups of animals had inoculums of 1×102, 1×106 and 1×108/100μl of Staphylococcus aureus administered to the muscle immediately after injury. Animals were recovered as phase one. At 48 hours, animals were culled, muscle harvested and axillary lymph nodes sampled. Quantitative microbiological analysis was performed on the muscle. Results: Six animals given a loading of 0.5kg yielded consistent injury with 20% of the muscle becoming necrotic. Representative of injury from ballistic trauma, this was adopted as standard. Twenty-two subsequent animals were exposed to the injury and inoculated with the challenge doses. 1×106/100μl S.aureus provided the greatest consistency in recovered yield. There were no adverse effects on animal welfare and body temperatures were always within normal limits. Discussion. This model enables a consistent, contaminated soft tissue injury to be delivered in vivo. It will allow the investigation of complex wound management including wound coverage and fracture fixation.


© Crown copyright 2010. Published with the permission of the Defence Science and Technology Laboratory on behalf of the Controller of HMSO