header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CAS IN ADAMANTINOMA RESECTION AND COMPUTER ASSISTED RECONSTRUCTION. A CASE REPORT

The International Society for Computer Assisted Orthopaedic Surgery (CAOS)



Abstract

Adamantinoma are rare, low grade malignant, bone tumors, making up only 0.1–0.48 percent of primary malignant bone tumors. They occur predominantly in the long bones, especially the tibia. Histogenetically it is thought that it originates from embryological displacement of basal epithelium of the skin, although other hypotheses have been proposed. Clinically most patients present with swelling and possible bending of the tibia, painful or painless. It's often noticed in an earlier stadium, but symptoms are non-specific and have a slow progressive character. Median patient age is 25 to 35 years, with a range from two to 86 years. It is slightly more common in men than woman, with a ratio of 5:4. Occurrence in children is even rarer. A study by Van Rijn et al. finds only 119 references, and presents six more cases. Treatment is the same. An MRI-scan should be performed to check for metastasis, loco regional staging and for operative planning. Operative excision and reconstruction is necessary to prevent metastasis and maintain load bearing capacity.

Generally these resections and reconstructions are done without objective measurements. The surgeon uses a rule of thumb, like a sculptor, or ruler approach to recreate the excised bone, either with allo- or autograft materials. An optimal fit, i.e. a minimal space between tibia and graft, is not always achieved, possibly resulting in pathological fractures.

This risk of pathological fractures lengthens recovery time. The fractures elongate hospitalization time and recovery time and are a heavy burden to patients. Computer assisted surgery (CAS) systems, used for example in prosthesis placement, offer objective measurements in 3d space of hard structures with high accuracy. These can be used to produce an accurate copy of the resected bone. If the reconstruction accurately fits the bone defect that's left after the resection, it's likely that the occurrence of pathological fractures decreases.

An adamantinoma in the tibia of a 12 year old boy was treated. Surgery consisted of hemicortical resection and inlay allograft reconstruction. The software used was the Orthomap navigation software (Stryker). A donor bone was supplied with help from the bone bank. The technical approach to the reconstruction was the planning of resection planes around the tumor. As the CT scale for both the patient and allograft bone is the same, the resection planes in the patient navigation setup could be copied to the allograft creation setup. Normal CAS setup was performed after first incision, with a tracker attached to the tibia. It was planned that a navigated bone saw would be used for the cutting. The tracker was attached to the saw with a new attachment, and calibrated in the universal calibration tool. During the surgery the oscillating saw proved to be impossible to navigate. The instrument calibration module was not able to accurately registered the saw, this despite accurate registrations in pre-operative testing. The CAS system was used however for accurately determining the saw planes. The planes were traced with the pointer tool. Then a non-navigated saw was used to perform both trapezoid shaped resections. A similar CAS setup was performed on the donor bone.

The reconstruction was a good fit. The skin was closed in layers. Post-operative x-ray control was performed. Operation time was just over two hours. Currently the follow-up time is five months. There have been no complications and the control x-rays show good allograft ingrowth.

While the original operation plan couldn't be performed the principle of computer assisted reconstruction has its merits. This was a proof of concept. The navigation was accurate to less than 1 mm, and the trapezoid resection shape guarantees a good fit. However the method of resection of the drawn planes by non-navigated bone saw was not accurate enough, because of the saw oscillations. There was improvement in operation time. With more accurate means of resection, as for example a computer controlled laser or water-jet, this type of reconstruction could have other very interesting applications.